Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(12): e110752, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522363

RESUMO

As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs) could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs) could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs) may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP) expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of Isl1 expressing cardiac progenitors, which could lead to enhancement of cardiac differentiation and engraftment, holding a significant therapeutic value for cardiac repair in the future.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Proteínas com Homeodomínio LIM/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Potenciais de Ação , Animais , Sinalização do Cálcio , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética
2.
Trends Biotechnol ; 32(9): 436-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25150363

RESUMO

The approach to research and development in biomedical science is changing. Increasingly, academia and industry seek to collaborate, and share resources and expertise, by establishing partnerships. Here, we explore the co-development partnership landscape in the field of regenerative medicine, focusing on agreements involving one or more private entities. A majority of the largest biopharmaceutical companies have announced strategic partnerships with a specific regenerative medicine focus, signifying the growth and widening appeal of this emerging sector.


Assuntos
Comportamento Cooperativo , Indústria Farmacêutica , Parcerias Público-Privadas/organização & administração , Medicina Regenerativa/métodos , Pesquisa/organização & administração , Universidades , Parcerias Público-Privadas/tendências , Medicina Regenerativa/tendências , Pesquisa/tendências
3.
J Cardiovasc Pharmacol Ther ; 19(4): 330-339, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24651517

RESUMO

Cardiovascular diseases remain the leading causes of morbidity and mortality in the developed world. Cellular-based cardiac regenerative therapy serves as a potential approach to treating cardiovascular diseases. Although various cellular types have been tested, induced pluripotent stem cells (iPSCs) are regarded as a promising cell source for therapy. In this review, we will highlight some of the advances in generating iPSCs and differentiation to cardiac cells. We will also discuss the progress in modeling cardiovascular diseases using iPSCs-derived cardiac cells. As we continue to make progress in iPSC and cardiac differentiation technology, we will come closer to the application of cardiac regenerative medicine.

4.
Cell ; 155(6): 1380-95, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315104

RESUMO

Transcription factor activity and turnover are functionally linked, but the global patterns by which DNA-bound regulators are eliminated remain poorly understood. We established an assay to define the chromosomal location of DNA-associated proteins that are slated for degradation by the ubiquitin-proteasome system. The genome-wide map described here ties proteolysis in mammalian cells to active enhancers and to promoters of specific gene families. Nuclear-encoded mitochondrial genes in particular correlate with protein elimination, which positively affects their transcription. We show that the nuclear receptor corepressor NCoR1 is a key target of proteolysis and physically interacts with the transcription factor CREB. Proteasome inhibition stabilizes NCoR1 in a site-specific manner and restrains mitochondrial activity by repressing CREB-sensitive genes. In conclusion, this functional map of nuclear proteolysis links chromatin architecture with local protein stability and identifies proteolytic derepression as highly dynamic in regulating the transcription of genes involved in energy metabolism.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Correpressor 1 de Receptor Nuclear/metabolismo , Proteólise , Elementos Reguladores de Transcrição , Animais , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Mitocôndrias/metabolismo , Ubiquitinação
5.
J Neurosci ; 33(26): 10802-14, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804101

RESUMO

Gyrification allows an expanded cortex with greater functionality to fit into a smaller cranium. However, the mechanisms of gyrus formation have been elusive. We show that ventricular injection of FGF2 protein at embryonic day 11.5-before neurogenesis and before the formation of intrahemispheric axonal connections-altered the overall size and shape of the cortex and induced the formation of prominent, bilateral gyri and sulci in the rostrolateral neocortex. We show increased tangential growth of the rostral ventricular zone (VZ) but decreased Wnt3a and Lef1 expression in the cortical hem and adjacent hippocampal promordium and consequent impaired growth of the caudal cortical primordium, including the hippocampus. At the same time, we observed ectopic Er81 expression, increased proliferation of Tbr2-expressing (Tbr2(+)) intermediate neuronal progenitors (INPs), and elevated Tbr1(+) neurogenesis in the regions that undergo gyrification, indicating region-specific actions of FGF2 on the VZ and subventricular zone (SVZ). However, the relative number of basal radial glia-recently proposed to be important in gyrification-appeared to be unchanged. These findings are consistent with the hypothesis that increased radial unit production together with rapid SVZ growth and heightened localized neurogenesis can cause cortical gyrification in lissencephalic species. These data also suggest that the position of cortical gyri can be molecularly specified in mice. In contrast, a different ligand, FGF8b, elicited surface area expansion throughout the cortical primordium but no gyrification. Our findings demonstrate that individual members of the diverse Fgf gene family differentially regulate global as well as regional cortical growth rates while maintaining cortical layer structure.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Fator 2 de Crescimento de Fibroblastos/farmacologia , Animais , Antimetabólitos/farmacologia , Axônios/fisiologia , Química Encefálica/efeitos dos fármacos , Bromodesoxiuridina/farmacologia , Contagem de Células , Córtex Cerebral/efeitos dos fármacos , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/fisiologia , DNA Complementar/biossíntese , DNA Complementar/genética , Densitometria , Dependovirus , Feminino , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Hibridização In Situ , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Neocórtex/anatomia & histologia , Neocórtex/crescimento & desenvolvimento , Gravidez , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Proteína Wnt3A/biossíntese , Proteína Wnt3A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...