Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 20(1): 63, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183038

RESUMO

PURPOSE: This study used machine learning classification of texture features from MRI of breast tumor and peri-tumor at multiple treatment time points in conjunction with molecular subtypes to predict eventual pathological complete response (PCR) to neoadjuvant chemotherapy. MATERIALS AND METHOD: This study employed a subset of patients (N = 166) with PCR data from the I-SPY-1 TRIAL (2002-2006). This cohort consisted of patients with stage 2 or 3 breast cancer that underwent anthracycline-cyclophosphamide and taxane treatment. Magnetic resonance imaging (MRI) was acquired pre-neoadjuvant chemotherapy, early, and mid-treatment. Texture features were extracted from post-contrast-enhanced MRI, pre- and post-contrast subtraction images, and with morphological dilation to include peri-tumoral tissue. Molecular subtypes and Ki67 were also included in the prediction model. Performance of classification models used the receiver operating characteristics curve analysis including area under the curve (AUC). Statistical analysis was done using unpaired two-tailed t-tests. RESULTS: Molecular subtypes alone yielded moderate prediction performance of PCR (AUC = 0.82, p = 0.07). Pre-, early, and mid-treatment data alone yielded moderate performance (AUC = 0.88, 0.72, and 0.78, p = 0.03, 0.13, 0.44, respectively). The combined pre- and early treatment data markedly improved performance (AUC = 0.96, p = 0.0003). Addition of molecular subtypes improved performance slightly for individual time points but substantially for the combined pre- and early treatment (AUC = 0.98, p = 0.0003). The optimal morphological dilation was 3-5 pixels. Subtraction of post- and pre-contrast MRI further improved performance (AUC = 0.98, p = 0.00003). Finally, among the machine-learning algorithms evaluated, the RUSBoosted Tree machine-learning method yielded the highest performance. CONCLUSION: AI-classification of texture features from MRI of breast tumor at multiple treatment time points accurately predicts eventual PCR. Longitudinal changes in texture features and peri-tumoral features further improve PCR prediction performance. Accurate assessment of treatment efficacy early on could minimize unnecessary toxic chemotherapy and enable mid-treatment modification for patients to achieve better clinical outcomes.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Curva ROC , Estudos Retrospectivos
2.
Sensors (Basel) ; 21(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069364

RESUMO

In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial offloading technique in MEC using a supervised deep learning approach. The proposed technique, comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently selects the partial offloading policy and also the size of each component of a task to reduce the service delay and energy consumption of UEs. We use deep learning to find, simultaneously, the best partitioning of a single task with the best offloading policy. The deep neural network (DNN) is trained through a comprehensive dataset, generated from our mathematical model, which reduces the time delay and energy consumption of the overall process. Due to the complexity and computation of the mathematical model in the algorithm being high, due to trained DNN the complexity and computation are minimized in the proposed work. We propose a comprehensive cost function, which depends on various delays, energy consumption, radio resources, and computation resources. Furthermore, the cost function also depends on energy consumption and delay due to the task-division-process in partial offloading. None of the literature work considers the partitioning along with the computational offloading policy, and hence, the time and energy consumption due to task-division-process are ignored in the cost function. The proposed work considers all the important parameters in the cost function and generates a comprehensive training dataset with high computation and complexity. Once we get the training dataset, then the complexity is minimized through trained DNN which gives faster decision making with low energy consumptions. Simulation results demonstrate the superior performance of the proposed technique with high accuracy of the DNN in deciding offloading policy and partitioning of a task with minimum delay and energy consumption for UE. More than 70% accuracy of the trained DNN is achieved through a comprehensive training dataset. The simulation results also show the constant accuracy of the DNN when the UEs are moving which means the decision making of the offloading policy and partitioning are not affected by the mobility of UEs.

3.
Sensors (Basel) ; 15(4): 7658-90, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25831084

RESUMO

Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate.

4.
Sensors (Basel) ; 14(8): 14500-25, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25111241

RESUMO

Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Multimídia , Tecnologia sem Fio/instrumentação , Algoritmos , Simulação por Computador , Modelos Teóricos , Programação Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...