Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1240291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693342

RESUMO

Background and purpose: Hypertension (HTN) is a multifactorial chronic disease that poses a significant global health burden and is associated with increased mortality rates. It often coexists with other conditions, such as cardiovascular, liver, and renal diseases, and has a strong association with diabetes mellitus. Insulin resistance and endothelial dysfunction commonly occur in individuals with both HTN and type 2 diabetes mellitus (T2DM). Genetic factors, along with environmental and pathological factors, play a role in the development of HTN. Recent studies have revealed the influence of single nucleotide polymorphisms (SNPs) in various genes on HTN. In this study, we aimed to investigate the genetic polymorphism of angiotensinogen (AGT) T174M (rs4762) and its association with HTN in diabetic patients. Methods: A total of 300 participants were enrolled in this study and divided into three groups: control, hypertensive, and hypertensive diabetic. Blood samples were collected, and predetermined biochemical parameters were assessed. Genotyping of the AGT T174M (rs4762) gene was conducted using Tetra ARMS PCR with specific primers. Results: The study findings revealed a significant association between AGT T174M (rs4762) genotype and HTN in diabetic patients within the Pakistani population. The C/T genotype of AGT T174M (rs4762) was found to be significant in both the hypertensive and hypertensive diabetic participants compared to the control group. This genotype was identified as a risk factor for developing HTN in both the hypertensive and hypertensive diabetic participants. Conclusion: This study demonstrates a significant association between AGT T174M (rs4762) genetic polymorphism and HTN in diabetic patients. The C/T genotype of AGT T174M (rs4762) may serve as a potential marker for identifying individuals at risk of developing HTN, specifically in the hypertensive and hypertensive diabetic populations. Further research is warranted to elucidate the underlying mechanisms and validate these findings in larger cohorts.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiotensinogênio/genética , Polimorfismo de Nucleotídeo Único , Hipertensão/complicações , Hipertensão/genética
2.
Metabolites ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557328

RESUMO

Angiotensinogen (AGT) is one of the most significant enzymes of the renin-angiotensin-aldosterone system (RAAS) which is involved in the regulation and maintenance of blood pressure. AGT is involved in the production of angiotensin I which is then converted into angiotensin II that leads to renal homeostasis. However, various genetic polymorphisms in AGT have been discovered in recent times which have shown an association with various diseases. Genetic polymorphism increases the level of circulating AGT in blood which exaggerates the effects produced by AGT. The associated diseases occur due to various effects produced by increased AGT levels. Several cardiovascular diseases including myocardial infarction, coronary heart disease, heart failure, hypertrophy, etc. are associated with AGT polymorphism. Other diseases such as depression, obesity, diabetic nephropathy, pre-eclampsia, and liver injury are also associated with some variants of AGT gene. The most common variants of AGT polymorphism are M235T and T174M. The two variants are associated with many diseases. Some other variants such as G-217A, A-6G, A-20C and G-152A, are also present but they are not as significant as that of M235T and T174M variants. These variants increase the level of circulating AGT and are associated with prevalence of different diseases. These diseases occur through various pathological pathways, but the initial reason remains the same, i.e., increased level of AGT in the blood. In this article, we have majorly focused on how genetic polymorphism of different variants of AGT gene is associated with the prevalence of different diseases.

3.
J Food Biochem ; 46(9): e14228, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35579327

RESUMO

Genistein, a polyphenolic isoflavone compound found abundantly in soy or soy-based products, is widely consumed in the Asian population. Genistein has poor bioavailability, to overcome this problem many advanced nano-drug delivery carrier systems are designed to enhance its water solubility and stability. However, further research is required to develop more efficient bioavailability improvement strategies. Genistein is a phytoestrogen which has been associated with reducing the risk of cancer, cardiovascular disorders, and diabetes mellitus. This plant-based bioactive compound possesses numerous biological activities such as anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, cardioprotective, and anti-diabetic activities to treat various disease states. Genistein has been used as an active therapeutic agent in many medications. Moreover, several clinical trials are in the ongoing stage to develop more efficient treatment therapies, especially for cancer treatment. This article highlights the protective and therapeutic benefits of genistein in the treatment of different ailments, and more specifically elaborates on the anti-cancer potential of genistein regarding various types of cancers. PRACTICAL APPLICATIONS: Genistein possesses versatile biological activities, including anti-diabetic, anti-inflammatory, anti-oxidant, anti-obesity, and anti-angiogenic. The most studied activity is anti-cancer. Currently, a number of pre-clinical and clinical trials are being carried out on anti-neoplastic and cytotoxic activities of genistein to develop novel therapeutic agents with excellent anti-cancer potential for the treatment of various kinds of cancer. Moreover, many bioavailability enhancement strategies have been developed to improve the bioavailability of genistein. Genistein shows significant hypoglycemic effects alone or in combination with other anti-diabetic agents. Genistein in combination with other chemotherapeutic agents is used for the treatment of prostate, bone, colorectal, glioma, breast, and bladder cancer.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Genisteína/farmacologia , Humanos , Masculino , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...