Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Front Immunol ; 15: 1416162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895127

RESUMO

Introduction: IL6 signaling plays an important role in triggering labor and IL6 is an established biomarker of intrauterine infection/inflammation (IUI) driven preterm labor (PTL). The biology of IL6 during IUI at the maternal-fetal interface was investigated in samples from human subjects and non-human primates (NHP). Methods: Pregnant women with histologic chorioamnionitis diagnosed by placenta histology were recruited (n=28 term, n=43 for preterm pregnancies from 26-36 completed weeks of gestation). IUI was induced in Rhesus macaque by intraamniotic injection of lipopolysachharide (LPS, n=23). IL1 signaling was blocked using Anakinra (human IL-1 receptor antagonist, n=13), and Tumor necrosis factor (TNF) signaling was blocked by anti TNF-antibody (Adalimumab n=14). The blockers were given before LPS. All animals including controls (intraamniotic injection of saline n=27), were delivered 16h after LPS/saline exposure at about 80% gestation. Results: IUI induced a robust expression of IL6 mRNAs in the fetal membranes (chorion-amnion-decidua tissue) both in humans (term and preterm) and NHP. The major sources of IL6 mRNA expression were the amnion mesenchymal cells (AMC) and decidua stroma cells. Additionally, during IUI in the NHP, ADAM17 (a protease that cleaves membrane bound IL6 receptor (IL6R) to release a soluble form) and IL6R mRNA increased in the fetal membranes, and the ratio of IL6 and soluble forms of IL6R, gp130 increased in the amniotic fluid signifying upregulation of IL6 trans-signaling. Both IL1 and TNF blockade suppressed LPS-induced IL6 mRNAs in the AMC and variably decreased elements of IL6 trans-signaling. Discussion: These data suggest that IL1 and TNF blockers may be useful anti-inflammatory agents via suppression of IL6 signaling at the maternal-fetal interface.


Assuntos
Interleucina-6 , Macaca mulatta , Transdução de Sinais , Fator de Necrose Tumoral alfa , Feminino , Gravidez , Humanos , Animais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Corioamnionite/imunologia , Corioamnionite/metabolismo , Corioamnionite/veterinária , Lipopolissacarídeos/imunologia , Interleucina-1/metabolismo , Adulto , Trabalho de Parto Prematuro/imunologia , Trabalho de Parto Prematuro/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Placenta/metabolismo , Placenta/imunologia
2.
Am J Perinatol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889889

RESUMO

Necrotizing enterocolitis (NEC) is one of the most common gastrointestinal conditions affecting 6 to 10% of low-birth-weight infants and remains a leading cause of death. The risk factors associated with NEC are complex and multifactorial, including preterm birth and intrauterine exposure to inflammation and hypoxia. Chorioamnionitis has been associated with intestinal injury in animal and human clinical studies. This review presents current evidence about the clinical impact of the intrauterine environment on intestinal injury during pregnancy and postpregnancy. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus. Prospective multicenter studies, including accurate and precise clinical, maternal, and laboratory predictors (e.g., inflammatory biomarkers), will help identify the mechanisms associated with the placental pathology, the development of NEC, and the impact of in utero-triggered inflammation on the clinical outcomes. Filling the knowledge gap to link the inflammatory surge to postnatal life will aid in identifying at-risk infants for NEC in a timely manner and facilitate the development of novel immunomodulatory treatments or interventions to improve the outcomes of these vulnerable infants. KEY POINTS: · Placental inflammatory and vascular lesions are associated with NEC severity.. · Higher grade chorioamnionitis with a fetal response is associated with an increased risk of surgical NEC.. · There is a need for routine bedside utilization of placenta pathology in clinical decision-making..

3.
Proc Natl Acad Sci U S A ; 121(25): e2400601121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861608

RESUMO

The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.


Assuntos
20-Hidroxiesteroide Desidrogenases , Decídua , Inflamação , Macaca mulatta , Parto , Progesterona , Células Estromais , Feminino , Animais , Progesterona/metabolismo , Progesterona/farmacologia , Decídua/metabolismo , Humanos , Camundongos , Células Estromais/metabolismo , Gravidez , Inflamação/metabolismo , 20-Hidroxiesteroide Desidrogenases/metabolismo , 20-Hidroxiesteroide Desidrogenases/genética , Interleucina-1beta/metabolismo , Córion/metabolismo
5.
STAR Protoc ; 5(2): 103044, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38678572

RESUMO

The amnion is a thin layer of fetal origin in contact with the amniotic fluid which plays a key role at the feto-maternal interface during pregnancy. Here, we present a protocol for isolation of human and Rhesusmacaque amnion cells. We describe steps for tissue dissection, cell isolation for flow cytometry analysis, and RNA isolation for RNA sequencing library preparation and analysis. This protocol can provide insights into altered immunological pathways during intrauterine infections to develop new therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Presicce et al.1.


Assuntos
Âmnio , Separação Celular , Citometria de Fluxo , Placenta , Âmnio/citologia , Humanos , Citometria de Fluxo/métodos , Feminino , Gravidez , Animais , Placenta/citologia , Separação Celular/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Macaca mulatta
6.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200558

RESUMO

BACKGROUND: Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS: Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS: We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION: These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.


Assuntos
Corioamnionite , Nascimento Prematuro , Recém-Nascido , Feminino , Lactente , Animais , Humanos , Gravidez , Proteínas Hedgehog , Macaca mulatta , Escherichia coli , Recém-Nascido Prematuro , Cerebelo , RNA Nuclear Pequeno
7.
Cureus ; 15(11): e49454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38152782

RESUMO

BACKGROUND: Coronary artery disease (CAD) is a widespread cause of morbidity and mortality. Serum uric acid, a mediator of endothelial dysfunction and inflammation in vascular disease, can increase the risk of atherosclerosis, contributing to CAD. As serum albumin inhibits platelet activation and aggregation, low levels of it can contribute to platelet-induced coronary artery stenosis. Limited studies have been conducted worldwide in evaluating the role of uric acid to albumin ratio (UAR) in predicting severity or poor outcomes in acute coronary syndrome (ACS) patients. This study was undertaken to assess the role of UAR as a predictor of CAD severity, which can facilitate the identification of high-risk patients. METHODOLOGY: A hospital-based analytical cross-sectional study was conducted in an urban tertiary healthcare center for a period of two months between June and August of 2022. A total of 100 ACS patients were included in the study. The study population included patients above the age of 18 years diagnosed with ACS who underwent a coronary angiography. Coronary angiograms were used to diagnose the presence of CAD, and its severity was assessed using Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) scores (SS). The correlation of UAR with CAD severity using SS was studied and compared between three varieties of ACS: ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina (UA). STATISTICS: Chi-squared tests were used to determine statistical significance for qualitative data. Independent t-tests were used to identify the mean difference between two quantitative variables. Receiver operating characteristic (ROC) curves were constructed for UAR and high SS. A comparison between UAR and neutrophil to lymphocyte ratio (NLR) as a predictor of disease severity was done. ROC and optimal cutoff points were chosen to calculate sensitivity, specificity, and positive and negative predictive values. Microsoft Excel (Microsoft, Redmond, WA, USA) and SPSS V22.0 (IBM Corp., Armonk, NY, USA) were used to analyze the data. RESULTS: A total of 100 ACS patients were included in the study and divided into two groups on the basis of SS, with 74% showing low severity and 26% showing intermediate-high severity. There was a statistically significant difference found between older age and SS (p=0.017). Our study showed 74% (n=74) of the patients were male and 26% (n=26) were female. It also revealed that 75.7% (n=56) of the male patients were in the low-severity group, and 24.3% (n=18) of males were in the intermediate-high severity group. 69.2% (n=18) of the female patients were in the low-severity group, and 30.8% (n=8) were in the intermediate-high severity group. Of the 100 patients, 55% were diagnosed with STEMI, of which 69.1% were in the low-severity group, and 30.9% were in the intermediate-high severity group. Among all the patients 33% of the patients were diagnosed as NSTEMI, of which 72.7% were in the low-severity group, and 27.3% were in the intermediate-high severity group. Twelve percent of the patients were diagnosed with UA, and 100% of these patients were in the low-severity group. The mean UAR was 1.40 ± 0.38 in the low-severity group and 1.29 ± 0.46 in the intermediate-high severity group (p=0.22). CONCLUSION: Our study yielded no statistically significant difference in UAR among varying severities of CAD.

8.
iScience ; 26(11): 108118, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953944

RESUMO

Intrauterine infection/inflammation (IUI) is a frequent complication of pregnancy leading to preterm labor and fetal inflammation. How inflammation is modulated at the maternal-fetal interface is unresolved. We compared transcriptomics of amnion (a fetal tissue in contact with amniotic fluid) in a preterm Rhesus macaque model of IUI induced by lipopolysaccharide with human cohorts of chorioamnionitis. Bulk RNA sequencing (RNA-seq) amnion transcriptomic profiles were remarkably similar in both Rhesus and human subjects and revealed that induction of key labor-mediating genes such as IL1 and IL6 was dependent on nuclear factor κB (NF-κB) signaling and reversed by the anti-tumor necrosis factor (TNF) antibody Adalimumab. Inhibition of collagen biosynthesis by IUI was partially restored by Adalimumab. Interestingly, single-cell transcriptomics, flow cytometry, and immunohistology demonstrated that a subset of amnion mesenchymal cells (AMCs) increase CD14 and other myeloid cell markers during IUI both in the human and Rhesus macaque. Our data suggest that CD14+ AMCs represent activated AMCs at the maternal-fetal interface.

9.
Front Immunol ; 14: 1150208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275869

RESUMO

Introduction: Chorioamnionitis is common in preterm birth and associated with a higher risk of intestinal inflammation and necrotizing enterocolitis. The intestinal inflammation influences the enteric nervous system development. We hypothesized that inflammation and innervation in the fetal ileum may be modified by chorioamnionitis induced by repeated challenge with lipopolysaccharide and/or preexisting Ureaplasma parvum infection at very low gestational age equivalent to 60% of term. Materials and methods: Time mated ovine fetuses were exposed by intraamniotic injections to chronic Ureaplasma parvum for 24 days and/or lipopolysaccharide for 7 days, 2 days, or 7 & 2 days before delivery at 94 +/-2 days of gestational age (term at approximately 150 days). Intestinal inflammation as well as structural changes of the enteric nervous system were assessed. Results: Lipopolysaccharide exposure increased CD3 and myeloperoxidase-positive cells (p < 0.05). Repetitive exposure to lipopolysaccharide or combined Ureaplasma parvum & lipopolysaccharide exposure increased intestinal inflammation (p < 0.05). The reduction of nuclei of neurons was most significant with repetitive lipopolysaccharide exposures but could be detected in all other intervention groups compared to the control group. Astrocyte-like glial cells increased if exposure to lipopolysaccharide was only 2 days before delivery or chronic exposure to Ureaplasma parvum existed beforehand (p < 0.05). Discussion: After exposure to chorioamnionitis induced by Ureaplasma parvum and/or lipopolysaccharide, inflammatory responses as well as structural changes of the enteric nervous system were more pronounced the longer and the more frequent the exposure to pro-inflammatory stimuli before birth. These changes may cause functional effects of clinical importance.


Assuntos
Corioamnionite , Nascimento Prematuro , Gravidez , Feminino , Ovinos , Animais , Recém-Nascido , Humanos , Lactente , Corioamnionite/induzido quimicamente , Lipopolissacarídeos/farmacologia , Carneiro Doméstico , Feto , Inflamação
10.
Cell Rep ; 42(4): 112352, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027297

RESUMO

Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.


Assuntos
Nascimento Prematuro , Animais , Feminino , Camundongos , Gravidez , Fator Ativador de Células B , Inflamação , Transdução de Sinais , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
11.
PLoS One ; 18(3): e0279991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952446

RESUMO

Preterm birth is a global public health crisis which results in significant neonatal and maternal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous preterm birth, and we have few diagnostic markers for adequate assessment of placental development and function. Previous studies of placental pathology and our transcriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm birth. It is known that placental DNA methylation changes over gestation. We hypothesized that if placental hypermaturity is present in our samples, we would observe a unique idiopathic spontaneous preterm birth DNA methylation profile potentially driving the gene expression differences we previously identified in our placental samples. Our results indicate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern suggesting hypermaturity. Only seven significant differentially methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the controls) profile were identified, indicating unusually high similarity in DNA methylation between idiopathic spontaneous preterm birth and term birth samples. We identified an additional 1,718 significantly methylated regions in our gestational age matched controls where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern, again indicating a striking level of similarity between the idiopathic spontaneous preterm birth and term birth samples. Pathway analysis of these regions revealed differences in genes within the WNT and Cadherin signaling pathways, both of which are essential in placental development and maturation. Taken together, these data demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature methylation signature than expected given their respective gestational age which likely impacts birth timing.


Assuntos
Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Nascimento Prematuro/patologia , Placenta/metabolismo , Perfilação da Expressão Gênica , Metilação de DNA , Nascimento a Termo
12.
Virus Res ; 328: 199079, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813240

RESUMO

In the Indian sub-continent, tomato leaf curl disease (ToLCD) of tomato caused by begomoviruses has emerged as a major limiting factor for tomato cultivation. Despite the spread of this disease in the western India, a systematic study on the characterization of virus complexes with ToLCD is lacking. Here, we report the identification of a complex of begomoviruses including 19 DNA-A and 4 DNA-B as well as 15 betasatellites with ToLCD in the western part of the country. Additionally, a novel betasatellite and an alphasatellite were also identified. The recombination breakpoints were detected in the cloned begomoviruses and betasatellites. The cloned infectious DNA constructs cause disease on the tomato (a moderately virus-resistant cultivar) plants, thus fulfilling Koch's postulates for these virus complexes. Further, the role of non-cognate DNA B/betasatellite with ToLCD-associated begomoviruses on disease development was demonstrated. It also emphasizes the evolutionary potential of these virus complexes in breaking disease resistance and plausible expansion of its host range. This necessitates to investigate the mechanism of the interaction between resistance breaking virus complexes and the infected host.


Assuntos
Begomovirus , Solanum lycopersicum , Begomovirus/genética , Doenças das Plantas , DNA Viral/genética , DNA Satélite/genética , Filogenia , Índia
13.
Front Plant Sci ; 13: 1040532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388532

RESUMO

Plant productivity is being seriously compromised by climate-change-induced temperature extremities. Agriculture and food safety are threatened due to global warming, and in many cases the negative impacts have already begun. Heat stress leads to significant losses in yield due to changes in growth pattern, plant phonologies, sensitivity to pests, flowering, grain filling, maturity period shrinkage, and senescence. Tomato is the second most important vegetable crop. It is very sensitive to heat stress and thus, yield losses in tomato due to heat stress could affect food and nutritional security. Tomato plants respond to heat stress with a variety of cellular, physiological, and molecular responses, beginning with the early heat sensing, followed by signal transduction, antioxidant defense, osmolyte synthesis and regulated gene expression. Recent findings suggest that specific plant organs are extremely sensitive to heat compared to the entire plant, redirecting the research more towards generative tissues. This is because, during sexual reproduction, developing pollens are the most sensitive to heat. Often, just a few degrees of temperature elevation during pollen development can have a negative effect on crop production. Furthermore, recent research has discovered certain genetic and epigenetic mechanisms playing key role in thermo-tolerance and have defined new directions for tomato heat stress response (HSR). Present challenges are to increase the understanding of molecular mechanisms underlying HS, and to identify superior genotypes with more tolerance to extreme temperatures. Several metabolites, genes, heat shock factors (HSFs) and microRNAs work together to regulate the plant HSR. The present review provides an insight into molecular mechanisms of heat tolerance and current knowledge of genetic and epigenetic control of heat-tolerance in tomato for sustainable agriculture in the future. The information will significantly contribute to improve breeding programs for development of heat tolerant cultivars.

15.
Front Public Health ; 10: 885212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548086

RESUMO

Percentage mammographic breast density (MBD) is one of the most notable biomarkers. It is assessed visually with the support of radiologists with the four qualitative Breast Imaging Reporting and Data System (BIRADS) categories. It is demanding for radiologists to differentiate between the two variably allocated BIRADS classes, namely, "BIRADS C and BIRADS D." Recently, convolution neural networks have been found superior in classification tasks due to their ability to extract local features with shared weight architecture and space invariance characteristics. The proposed study intends to examine an artificial intelligence (AI)-based MBD classifier toward developing a latent computer-assisted tool for radiologists to distinguish the BIRADS class in modern clinical progress. This article proposes a multichannel DenseNet architecture for MBD classification. The proposed architecture consists of four-channel DenseNet transfer learning architecture to extract significant features from a single patient's two a mediolateral oblique (MLO) and two craniocaudal (CC) views of digital mammograms. The performance of the proposed classifier is evaluated using 200 cases consisting of 800 digital mammograms of the different BIRADS density classes with validated density ground truth. The classifier's performance is assessed with quantitative metrics such as precision, responsiveness, specificity, and the area under the curve (AUC). The concluding preliminary outcomes reveal that this intended multichannel model has delivered good performance with an accuracy of 96.67% during training and 90.06% during testing and an average AUC of 0.9625. Obtained results are also validated qualitatively with the help of a radiologist expert in the field of MBD. Proposed architecture achieved state-of-the-art results with a fewer number of images and with less computation power.


Assuntos
Densidade da Mama , Neoplasias da Mama , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Redes Neurais de Computação
16.
Sci Rep ; 12(1): 8438, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589747

RESUMO

The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 µg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.


Assuntos
Poluentes Atmosféricos , Doenças Placentárias , Poluentes Atmosféricos/toxicidade , Animais , Decídua , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Placenta , Gravidez , Trofoblastos
17.
Sci Transl Med ; 14(638): eabl8574, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353543

RESUMO

Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1ß and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.


Assuntos
Corioamnionite , Nascimento Prematuro , Animais , Corioamnionite/induzido quimicamente , Corioamnionite/patologia , Feminino , Pulmão/patologia , Macaca mulatta , Gravidez , Nascimento Prematuro/prevenção & controle , Troca Gasosa Pulmonar
18.
Mucosal Immunol ; 15(4): 730-744, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314757

RESUMO

Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which leads to elevated levels of pro-inflammatory mediators and microbial products in the amniotic fluid, which come in contact with fetal lungs. Yet, fetal pulmonary immune responses to such exposure remain poorly characterized. To address this gap, we used our established HCA model, in which pregnant Rhesus macaques receive intraamniotic (IA) saline or LPS. IA LPS induced a potent and rapid myeloid cell response in fetal lungs, dominated by neutrophils and monocytes/macrophages. Infiltrating and resident myeloid cells exhibited transcriptional profiles consistent with exposure to TLR ligands, as well as cytokines, notably IL-1 and TNFα. Although simultaneous, in vivo blockade of IL-1 and TNFα signaling did not prevent the inflammatory cell recruitment, it blunted the lung overall inflammatory state reducing communication between, and activation of, infiltrating immune cells. Our data indicate that the fetal innate immune system can mount a rapid multi-faceted pulmonary immune response to in utero exposure to inflammation. These data provide mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlight therapeutic potential of inflammatory blockade in the fetus.


Assuntos
Corioamnionite , Pneumonia , Nascimento Prematuro , Líquido Amniótico , Animais , Corioamnionite/patologia , Feminino , Humanos , Inflamação , Interleucina-1 , Lipopolissacarídeos , Pulmão , Macaca mulatta , Gravidez , Nascimento Prematuro/patologia , Fator de Necrose Tumoral alfa
19.
PLoS Biol ; 19(9): e3001385, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495952

RESUMO

Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli-infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli-infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.


Assuntos
Imunidade , Trabalho de Parto Prematuro/patologia , Complicações na Gravidez/imunologia , Animais , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Feminino , Inflamação , Lipopolissacarídeos/toxicidade , Macaca mulatta , Gravidez
20.
Medicina (Kaunas) ; 57(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673527

RESUMO

Background and Objectives: Artemisia is one of the most widely distributed genera of the family Astraceae with more than 500 diverse species growing mainly in the temperate zones of Europe, Asia and North America. The plant is used in Chinese and Ayurvedic systems of medicine for its antiviral, antifungal, antimicrobial, insecticidal, hepatoprotective and neuroprotective properties. Research based studies point to Artemisia's role in addressing an entire gamut of physiological imbalances through a unique combination of pharmacological actions. Terpenoids, flavonoids, coumarins, caffeoylquinic acids, sterols and acetylenes are some of the major phytochemicals of the genus. Notable among the phytochemicals is artemisinin and its derivatives (ARTs) that represent a new class of recommended drugs due to the emergence of bacteria and parasites that are resistant to quinoline drugs. This manuscript aims to systematically review recent studies that have investigated artemisinin and its derivatives not only for their potent antiviral actions but also their utility against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Materials andMethods: PubMed Central, Scopus and Google scholar databases of published articles were collected and abstracts were reviewed for relevance to the subject matter. Conclusions: The unprecedented impact that artemisinin had on public health and drug discovery research led the Nobel Committee to award the Nobel Prize in Physiology or Medicine in 2015 to the discoverers of artemisinin. Thus, it is clear that Artemisia's importance in indigenous medicinal systems and drug discovery systems holds great potential for further investigation into its biological activities, especially its role in viral infection and inflammation.


Assuntos
Antivirais , Artemisia , Fatores Imunológicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antivirais/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...