Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 978: 176704, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830458

RESUMO

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.

2.
J Org Chem ; 88(24): 16773-16782, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015566

RESUMO

We report herein a protocol for an organocatalyzed asymmetric vinylogous Michael addition of aryl alkane nucleophiles with enals under base- and additive-free conditions. A series of allylic building blocks were obtained in 60%-93% yield and 88-99% ee with 20 mol % diphenylprolinol silyl ether as catalyst. This protocol has advantages such as excellent chemoselectivity and regioselectivity, good tolerance of functionalities, and simple reaction conditions.

4.
Adv Sci (Weinh) ; 10(14): e2205862, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922751

RESUMO

The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Animais , Camundongos , Astrócitos/metabolismo , Autofagia , Disfunção Cognitiva/etiologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Encefalopatia Associada a Sepse/metabolismo , Humanos
5.
Brain Res Bull ; 190: 195-203, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191729

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease. The main pathological feature is the degeneration and loss of dopaminergic neurons in the substantia nigra, which leads to the significant decrease of dopamine content in the striatum. Our recent studies have shown that scorpion venom heat-resistant synthetic peptide (SVHRSP) have protective effects on neuroinflammation. In this study, using C. elegans induced by 6-hydroxydopamine (6-OHDA) as neurodegenerative model, we investigated the effect of SVHRSP on dopaminergic neurons neurotoxicity. Our results implied that SVHRSP treatment could improve the motor capacity in 6-OHDA-induced C. elegans and improve dopaminergic neuron mediated food sensitivity behavior. After SVHRSP treatment, dopaminergic neuron degeneration induced by 6-OHDA was significantly prevented along with a decreased α-synuclein aggregation and restored lipid deposition in C. elegans induced by 6-OHDA. We also observed the reduced levels of reactive oxygen species (ROS) after SVHRSP treatment in model-building C. elegans. In addition, the genes related to apoptosis, oxidative stress, like ctl-1, egl-1and cat-2 in C. elegans induced by 6-OHDA upregulated after treatment with SVHRSP. In conclusion, SVHRSP may impose anti-PD effect through its neuroprotective action on dopaminergic neurons. This study elucidates the effect and related mechanism of SVHRSP on PD and provides evidences for the therapeutic treatment of PD.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Venenos de Escorpião , Animais , Oxidopamina/toxicidade , Neurônios Dopaminérgicos , Caenorhabditis elegans/genética , Venenos de Escorpião/farmacologia , Venenos de Escorpião/uso terapêutico , Doenças Neurodegenerativas/patologia , Temperatura Alta , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Dopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Peptídeos/farmacologia , Modelos Animais de Doenças
6.
J Neurosci ; 42(43): 8169-8183, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36100398

RESUMO

Aquaporin-4 (AQP4) is characterized by the formation of orthogonal arrays of particles (OAPs) comprising its M1 and M23 isoforms in the plasma membrane. However, the biological importance of OAP formation is obscure. Here, we developed an OAP depolymerization male mouse model by transgenic knock-in of an AQP4-A25Q mutation. Analyses of the mutant brain tissue using blue native polyacrylamide gel electrophoresis, super-resolution imaging, and immunogold electron microscopy revealed remarkably reduced OAP structures and glial endfeet localization of the AQP4-A25Q mutant protein without effects on its overall mRNA and protein expression. AQP4A25Q/A25Q mice showed better survival and neurologic deficit scores when cerebral edema was induced by water intoxication or middle cerebral artery occlusion/reperfusion. The brain water content and swelling of pericapillary astrocytic endfeet processes in AQP4A25Q/A25Q mice were significantly reduced, functionally supporting decreased AQP4 protein expression at the blood-brain barrier. The infarct volume and neuronal damage were also reduced in AQP4A25Q/A25Q mice in the middle cerebral artery occlusion/reperfusion model. Astrocyte activation in the brain was alleviated in AQP4A25Q/A25Q mice, which may be associated with decreased cell swelling. We conclude that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.SIGNIFICANCE STATEMENT Aquaporin-4 (AQP4) is characterized by orthogonal arrays of particles (OAPs) comprising the M1 and M23 isoforms in the membrane. Here, an OAP depolymerization male mouse model induced by AQP4-A25Q mutation was first established, and the functions of OAP depolymerization in cerebral edema have been studied. The results revealed that AQP4 lost its OAP structure without affecting AQP4 mRNA and protein levels in AQP4-A25Q mice. AQP4-A25Q mutation mice has neuroprotective effects on cerebral edema induced by water intoxication and middle cerebral artery occlusion/reperfusion through relieving the activation of astrocytes and suppressed microglia-mediated neuroinflammation. We concluded that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.


Assuntos
Aquaporina 4 , Edema Encefálico , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Intoxicação por Água , Animais , Masculino , Camundongos , Aquaporina 4/genética , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Edema Encefálico/genética , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Membrana Celular/metabolismo , Edema/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fármacos Neuroprotetores/metabolismo , Mutação Puntual , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Intoxicação por Água/metabolismo
7.
Front Pharmacol ; 13: 919269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910355

RESUMO

Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against ß-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat-resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.

9.
Front Pharmacol ; 12: 704715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675802

RESUMO

Background: Intervention of neuroinflammation in central nervous system (CNS) represents a potential therapeutic strategy for a host of brain disorders. The scorpion Buthus martensii Karsch (BmK) and its venom have long been used in the Orient to treat inflammation-related diseases such as rhumatoid arthritis and chronic pain. Scorpion venom heat-resistant peptide (SVHRP), a component from BmK venom, has been shown to reduce seizure susceptibility in a rat epileptic model and protect against cerebral ischemia-reperfusion injury. As neuroinflammation has been implicated in chronic neuronal hyperexcitability, epileptogenesis and cerebral ischemia-reperfusion injury, the present study aimed to investigate whether SVHRP has anti-inflammatory property in brain. Methods: An animal model of neuroinflammation induced by lipopolysacchride (LPS) injection was employed to investigate the effect of SVHRP (125 µg/kg, intraperitoneal injection) on inflammagen-induced expression of pro-inflammatory factors and microglia activation. The effect of SVHRP (2-20 µg/ml) on neuroinflammation was further investigated in primary brain cell cultures containing microglia as well as the immortalized BV2 microglia culture stimulated with LPS. Real-time quantitative PCR were used to measure mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in hippocampus of animals. Protein levels of TNF-α, iNOS, P65 subunit of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) were examined by ELISA or western blot. Microglia morphology in animal hippocampus or cell cultures and cellular distribution of p65 were shown by immunostaining. Results: Morphological study demonstrated that activation of microglia, the main component that mediates the neuroinflammatory process, was inhibited by SVHRP in both LPS mouse and cellular model. Our results also showed dramatic increases in the expression of iNOS and TNF-α in hippocampus of LPS-injected mice, which was significantly attenuated by SVHRP treatment. In vitro results showed that SVHRP attenuated LPS-elicited expression of iNOS and TNF-α in different cultures without cell toxicity, which might be attributed to suppression of NF-κB and MAPK pathways by SVHRP. Conclusion: Our study demonstrates that SVHRP is able to inhibit neuroinflammation and microglia activation, which may underlie the therapeutic effects of BmK-derived materials, suggesting that BmK venom could be a potential source for CNS drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...