Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1347293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686105

RESUMO

The mixture of whole-plant soybean and whole-plant corn silage (WPSCS) is nutrient balanced and is also a promising roughage for ruminants. However, few studies have investigated the changes in bacterial community succession in WPSCS inoculated with homofermentative and heterofermentative lactic acid bacteria (LAB) and whether WPSCS inoculated with LAB can improve fermentation quality by reducing nutrient losses. This study investigated the effect of Lactobacillus plantarum (L. plantarum) or Lactobacillus buchneri (L. buchneri) on the fermentation quality, aerobic stability, and bacterial community of WPSCS. A 40:60 ratio of whole-plant soybean corn was inoculated without (CK) or with L. plantarum (LP), L. buchneri (LB), and a mixture of LP and LB (LPB), and fermented for 14, 28, and 56 days, followed by 7 days of aerobic exposure. The 56-day silage results indicated that the dry matter content of the LP and LB groups reached 37.36 and 36.67%, respectively, which was much greater than that of the CK group (36.05%). The pH values of the LP, LB, and LPB groups were significantly lower than those of the CK group (p < 0.05). The ammoniacal nitrogen content of LB was significantly lower than that of the other three groups (p < 0.05), and the ammoniacal nitrogen content of LP and LPB was significantly lower than that of CK (p < 0.05). The acetic acid content and aerobic stability of the LB group were significantly greater than those of the CK, LP, and LPB groups (p < 0.05). High-throughput sequencing revealed a dominant bacteria shift from Proteobacteria in fresh forage to Firmicutes in silage at the phylum level. Lactobacillus remained the dominant genus in all silage. Linear discriminant analysis effect size (LEFSe) analysis identified Lactobacillus as relatively abundant in LP-treated silage and Weissella in LB-treated groups. The results of KEGG pathway analysis of the 16S rRNA gene of the silage microbial flora showed that the abundance of genes related to amino acid metabolism in the LP, LB, and LPB groups was lower than that in the CK group (p < 0.05). In conclusion, LAB application can improve the fermentation quality and nutritional value of WPSCS by regulating the succession of microbial communities and metabolic pathways during ensiling. Concurrently, the LB inoculant showed the potential to improve the aerobic stability of WPSCS.

2.
BMC Vet Res ; 19(1): 202, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833763

RESUMO

BACKGROUND: Brucellosis is a common zoonotic disease caused by Brucella, which causes enormous economic losses and public burden to epidemic areas. Early and precise diagnosis and timely culling of infected animals are crucial to prevent the infection and spread of Brucella. In recent years, RNA-guided CRISPR/Cas12a(Clustered Regularly Interspaced Short Palindromic Repeats and its associated protein 12a) nucleases have shown great promise in nucleic acid detection. This research aims to develop a CRISPR/CAST (CRISPR/Cas12a Test strip) package that can rapidly detect Brucella nucleic acid during on-site screening, especially on remote family pastures. The CRISPR/Cas12a system combined with recombinase polymerase amplification (RPA), and lateral flow read-out. RESULTS: We selected the conserved gene bp26, which commonly used in Brucella infection detection and compared on Genbank with other Brucella species. The genomes of Brucella abortus 2308, Brucella suis S2, Brucella melitansis 16 M, and Brucella suis 1330, et al. were aligned, and the sequences were found to be consistent. Therefore, the experiments were only performed on B. melitensis. With the CRISPR/CAST package, the assay of Brucella nucleic acid can be completed within 30 min under isothermal temperature conditions, with a sensitivity of 10 copies/µl. Additionally, no antigen cross-reaction was observed against Yersinia enterocolitica O:9, Escherichia coli O157, Salmonella enterica serovar Urbana O:30, and Francisella tularensis. The serum samples of 398 sheep and 100 cattle were tested by the CRISPR/CAST package, of which 31 sheep and 8 cattle were Brucella DNA positive. The detection rate was consistent with the qPCR results and higher than that of the Rose Bengal Test (RBT, 19 sheep and 5 cattle were serum positive). CONCLUSIONS: The CRISPR/CAST package can accurately detect Brucella DNA in infected livestock within 30 min and exhibits several advantages, including simplicity, speed, high sensitivity, and strong specificity with no window period. In addition, no expensive equipment, standard laboratory, or professional operators are needed for the package. It is an effective tool for screening in the field and obtaining early, rapid diagnoses of Brucella infection. The package is an efficient tool for preventing and controlling epidemics.


Assuntos
Brucelose , Doenças dos Bovinos , Ácidos Nucleicos , Doenças dos Ovinos , Animais , Bovinos , Ovinos/genética , Gado , Sistemas CRISPR-Cas , Brucelose/diagnóstico , Brucelose/veterinária , Brucella abortus , DNA , Doenças dos Bovinos/genética , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/genética
3.
J Immunol Res ; 2022: 4686541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601429

RESUMO

Brucella is a globally distributed zoonotic disease that can cause abortion and changes in immune function in humans and animals. At present, there is no good treatment plan for Brucella, and animals can only be treated harmlessly once they become ill, resulting in huge economic losses. Therefore, the prevention of Brucella infection is a very crucial step. Although a variety of Brucella vaccines have been widely used, they have varying degrees of shortcomings. For example, some Brucella vaccines have residual virulence, which leads to the emergence of Brucella in animals during the immunization process. Bacillus infection and other conditions occur. To further reduce the toxicity of the Brucella vaccine and enhance its protective effect on animals, this study used Antigen 85A (Ag85A) as a carrier of the Brucella vaccine to fuse with the Brucella S2 vaccine. The results of the study found that the S2-Ag85A oral Brucella vaccine could effectively reduce the toxicity residue of the S2 vaccine, stimulate the mice to produce a better immunogenic response, and effectively activate the expression levels of Brucella heterozygous IgG1 and IgG2a. Experiments have shown that the expression of IFN-γ in the peripheral blood serum and spleen of mice is significantly increased, and the expression levels of IL-1ß, TNF-α, and IL-6 are significantly reduced, which may indicate that S2-Ag85A oral Brucella vaccine could induce the expression of IFN-γ, thus downregulating the expression levels of IL-6 and TNF-α in the spleen tissue. The above results indicate that the S2-Ag85A oral vaccine is an effective attenuated vaccine for preventing Brucella infection.


Assuntos
Vacina contra Brucelose , Brucella , Brucelose , Humanos , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Brucelose/prevenção & controle , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...