Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14697-14704, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38753349

RESUMO

Chiral superstructures with unique chiroptical properties that are not inherent in the individual units are essential in applications such as 3D displays, spintronic devices, biomedical sensors, and beyond. Generally, chiral superstructures are obtained by tedious procedures exploring various physical and chemical forces to break spatial symmetry during the self-assembly of discrete nanoparticles. In contrast, we herein present a simple and efficient approach to chiral superstructures by intercalating small chiral molecules into preformed achiral superstructures. As a model system, the chiral CdSe nanoplatelet (NPL) superlattice exhibits a giant and tunable optical activity with the highest g-factor reaching 3.09 × 10-2 to the excitonic transition of the NPL superlattice, nearly 2 orders of magnitude higher than that of the corresponding separated chiral NPLs. The theoretical analysis reveals that the chiral deformation in the NPL superlattice induced by the chiral perturbation of the small chiral molecules is critical to the observed huge optical activity. We anticipate that this research lays a foundation for understanding and applying chiral inorganic nanosystems.

2.
Nanoscale Horiz ; 8(12): 1686-1694, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37702034

RESUMO

Two-dimensional topological insulators/semimetals have recently attracted much attention. However, quantum-sized topological insulators/semimetals with intrinsic characteristics have never been reported before. Herein, we report the high-yield production of topological insulator (i.e., Bi2Se3 and Sb2Te3) and semimetal (i.e., TiS2) quantum sheets (QSs) with monolayer structures and sub-4 nm lateral sizes. Both linear and nonlinear optical performances of the QSs are investigated. The QS dispersions present remarkable photoluminescence with excitation wavelength-, concentration-, and solvent-dependence. The solution-processed QSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate exceptional nonlinear saturation absorption (NSA). Particularly, Bi2Se3 QSs-PMMA enables record-high NSA performance with a broadband feature. Specifically, the (absolute) modulation depths up to 71.6 and 72.4% and saturation intensities down to 1.52 and 0.49 MW cm-2 are achieved at 532 and 800 nm, respectively. Such a phenomenal NSA performance would greatly facilitate their applications in mode-locked lasers and related fields.

3.
ACS Nano ; 16(9): 13933-13941, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35984986

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) possess large second-order optical nonlinearity, making them ideal candidates for miniaturized on-chip frequency conversion devices, all-optical interconnection, and optoelectronic integration components. However, limited by subnanometer thickness, the monolayer TMD exhibits low second harmonic generation (SHG) conversion efficiency (<0.1%) and poor directionality, which hinders their practical applications. Herein, we proposed a Fabry-Pérot (F-P) cavity formed by coupling an atomically thin WS2 film with a silicon hole matrix to enhance the SH emission. A maximum enhancement (∼1580 times) is achieved by tuning the excitation wavelength to be resonant with the microcavity modes. The giant enhancement is attributed to the strong electric field enhancement in the F-P cavity and the oscillator strength enhancement of excitons from suspended WS2. Moreover, directional SH emission (divergence angle ∼5°) is obtained benefiting from the resonance of the F-P microcavity. Our research results can provide a practical sketch to develop both high-efficiency and directional nonlinear optical devices for silicon-based on-chip integration optics.

4.
Nano Lett ; 22(14): 5651-5658, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35786976

RESUMO

Edge states of two-dimensional transition-metal dichalcogenides (TMDCs) are crucial to quantum circuits and optoelectronics. However, their dynamics are pivotal but remain unclear due to the edge states being obscured by their bulk counterparts. Herein, we study the state-resolved transient absorption spectra of ball-milling-produced MoS2 nanosheets with 10 nm lateral size with highly exposed free edges. Electron energy loss spectroscopy and first-principles calculations confirm that the edge states are located in the range from 1.23 to 1.78 eV. Upon above bandgap excitations, excitons populate and diffuse toward the boundary, where the potential gradient blocks excitons and the edge states are formed through interband transitions within 400 fs. With below bandgap excitations, edge states are slowed down to 1.1 ps due to the weakened valence orbital coupling. These results shed light on the fundamental exciton dissociation processes on the boundary of functionalized TMDCs, enabling the ground work for applications in optoelectronics and light-harvesting.

5.
Science ; 377(6604): 433-436, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862517

RESUMO

Semiconducting cubic boron arsenide (c-BAs) has been predicted to have carrier mobility of 1400 square centimeters per volt-second for electrons and 2100 square centimeters per volt-second for holes at room temperature. Using pump-probe transient reflectivity microscopy, we monitored the diffusion of photoexcited carriers in single-crystal c-BAs to obtain their mobility. With near-bandgap 600-nanometer pump pulses, we found a high ambipolar mobility of 1550 ± 120 square centimeters per volt-second, in good agreement with theoretical prediction. Additional experiments with 400-nanometer pumps on the same spot revealed a mobility of >3000 square centimeters per volt-second, which we attribute to hot electrons. The observation of high carrier mobility, in conjunction with high thermal conductivity, enables an enormous number of device applications for c-BAs in high-performance electronics and optoelectronics.

6.
Nano Lett ; 22(10): 4049-4057, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35522976

RESUMO

Perovskite micro/nanostructures have recently emerged as a highly attractive gain material for nanolasers. To explore their applications and further improve performance, it is essential to understand the optical gain and the anisotropic properties. Herein, we obtained high quality CsPbBr3 microplatelets (MP) with anisotropic orthorhombic phase. Optical gain of CsPbBr3 single crystal MP was investigated via microscale variable stripe-length measurement. A polarization-dependent optical gain was observed, and the gain along [002] was larger than that of [1-10]. The behavior was attributed to the lowest energy transition dipole moment of [002] induced by the smaller deviation of Br-Pb-Br bond from the perfect lattice. Along the [002] direction, we obtained the optical gain value up to 5077 cm-1, which is the record value ever reported. Moreover, all optical switching of lasing is realized by periodical polarized excitation. Our results provide new perceptions in the design of novel functional anisotropic devices based on perovskite micro/nanostructures.

7.
J Phys Chem Lett ; 13(17): 3929-3936, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35475608

RESUMO

Two-dimensional (2D) transition-metal carbides (MXenes) have attracted great interest owing to their unique structures and superior properties compared to those of traditional 2D materials. The transformation of 2D MXenes into sub-5-nm quantum sheets (QSs) is urgently required but rarely reported. Herein, the Ti3AlC2 MAX and Ti3C2 MXene QSs with monolayer structures and sub-5-nm lateral sizes are demonstrated. Exceptionally high yields (>15 wt %) are obtained through an all-physical top-down method. The QS dispersions present unique photoluminescence, and the QSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate remarkable nonlinear saturation absorption (NSA). Absolute modulation depths of 30.6 and 49.9% and saturation intensities of 1.16 and 1.25 MW cm-2 (i.e., 116 and 125 nJ cm-2) are achieved for Ti3AlC2 QSs and Ti3C2 QSs, respectively. Such record-high NSA performances of MXene QSs would boost the application of MAX/MXene materials in nonlinear optics.

8.
Nanoscale ; 13(17): 8004-8011, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33956919

RESUMO

Mass production of semiconductor quantum dots (QDs) from bulk materials is highly desired but far from being satisfactory. Herein, we report a general strategy to mechanically tailor semiconductor bulk materials into QDs. Semiconductor bulk materials are routinely available via simple chemical precipitation. From their bulk materials, a variety of semiconductor (e.g., lead sulfide (PbS), cadmium sulfide (CdS), copper sulfide (CuS), ferrous sulfide (FeS), and zinc sulfide (ZnS)) QDs are successfully produced in high yields (>15 wt%). This is achieved by a combination of silica-assisted ball-milling and sonication-assisted solvent treatment. The as-produced QDs show intrinsic characteristics and outstanding water solubility (up to 5 mg mL-1), facilitating their practical applications. The QD dispersions present remarkable photoluminescence (PL) with exciton-dependence and nanosecond (ns)-scale lifetimes. The QDs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate exciting solid-state fluorescence and exceptional nonlinear saturation absorption (NSA). Absolute modulation depths of up to 58% and saturation intensities down to 0.40 MW cm-2 were obtained. Our strategy could be applied to any semiconductor bulk materials and therefore paves the way for the construction of the complete library of semiconductor QDs.

9.
Nano Lett ; 21(10): 4137-4144, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33913710

RESUMO

Colloidal CdSe nanoplatelets (NPLs) have substantial potential in light-emitting applications because of their quantum-well-like characteristics. The self-trapped state (STS), originating from strong electron-phonon coupling (EPC), is promising in white light luminance because of its broadband emission. However, achieving STS in CdSe NPLs is extremely challenging because of their intrinsic weak EPC nature. Herein, we developed a strong STS emission in the spectral range of 450-600 nm by building superlattice (SL) structures with colloidal CdSe NPLs. We demonstrated that STS is generated via strong coupling of excitons and zone-folded longitudinal acoustic phonons with formation time of ∼450 fs and localization length of ∼0.56 nm. The Huang-Rhys factor, describing the EPC strength in SL structure, is estimated to be ∼19.9, which is much larger than that (∼0.1) of monodispersed CdSe NPLs. Our results provide an in-depth understanding of STS and a platform for generating and manipulating STS by designing SL structures.

10.
ACS Nano ; 15(1): 1291-1300, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33373181

RESUMO

Second-harmonic generation (SHG) in plasmonic nanostructures has been investigated for decades due to their wide applications in photonic circuit, quantum optics and biosensing. Development of large-scale, uniform, and efficient plasmonic nanostructure system with tunable modes is desirable for their feasible utilizations. Herein, we design an efficient inch-scale SHG source by a solution-processed method instead of traditional high-cost processes. By assembling the gold nanoparticles with the porous anodic alumina templates, multiresonance in both visible and near-infrared regions can be achieved in hexagonal plasmonic nanostructure arrays, which provide strong electric field enhancement at the gap region. Polarization-independence SHG radiation has been realized owing to the in-plane isotropic characteristic of assembled unit. The tilt-angle dependent and angle-resolved measurement showed that wide-angle nonlinear response is achieved in our device because of the gap geometry of ball-in-bowl nanostructure with nonlinear emission electric dipoles distributed on the concave surface, which makes it competitive in practical applications. Our progress not only makes it possible to produce uniform inch-scale nonlinear arrays through low-cost solution process; and also advances the understanding of the SHG radiation in plasmonic nanostructures.

11.
ACS Nano ; 14(11): 15605-15615, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33169976

RESUMO

Single-crystal perovskites with excellent photophysical properties are considered to be ideal materials for optoelectronic devices, such as lasers, light-emitting diodes and photodetectors. However, the growth of large-scale perovskite single-crystal films (SCFs) with high optical gain by vapor-phase epitaxy remains challenging. Herein, we demonstrated a facile method to fabricate large-scale thin CsPbBr3 SCFs (∼300 nm) on the c-plane sapphire substrate. High temperature is found to be the key parameter to control low reactant concentration and sufficient surface diffusion length for the growth of continuous CsPbBr3 SCFs. Through the comprehensive study of the carrier dynamics, we clarify that the trapped-related exciton recombination has the main effect under low carrier density, while the recombination of excitons and free carriers coexist until free carriers plays the dominate role with increasing carrier density. Furthermore, an extremely low-threshold (∼8 µJ cm-2) amplified spontaneous emission was achieved at room temperature due to the high optical gain up to 1255 cm-1 at a pump power of 20 times threshold (∼20 Pth). A microdisk array was prepared using a focused ion beam etching method, and a single-mode laser was achieved on a 3 µm diameter disk with the threshold of 1.6 µJ cm-2. Our experimental results not only present a versatile method to fabricate large-scale SCFs of CsPbBr3 but also supply an arena to boost the optoelectronic applications of CsPbBr3 with high performance.

12.
ACS Appl Mater Interfaces ; 12(42): 47784-47791, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985171

RESUMO

Transformation of carbon nanotubes (CNTs) into sub-10 nm pieces is highly required but remains a great challenge. Herein, we report a robust strategy capable of mechanically tailoring pristine multi-walled carbon nanotubes (MWCNTs) into graphene quantum sheets (M-GQSs) with an extremely high yield of up to 44.6 wt %. The method combines silica-assisted ball-milling and sonication-assisted solvent exfoliation and therefore enables reproducible high-yield production of M-GQSs directly from MWCNTs. Remarkable solvent diversity and extraordinary solvability (up to 7 mg/mL) are demonstrated facilitating the solution processing of the M-GQSs. The M-GQSs are essentially monolayers with intrinsic curvature, which could be determinative to their outstanding performances in both dispersions and thin films. Besides the excitation wavelength-, concentration-, and solvent-dependent photoluminescence in dispersions, the solid-state fluorescence and exceptional nonlinear saturation absorption (NSA) in thin films are demonstrated. Particularly, NSA with relative modulation depth up to 46% and saturation intensity down to 1.53 MW/cm2 are achieved in M-GQS/poly(methyl methacrylate) hybrid thin films with a loading content of merely 0.2 wt %. Our method opens up a new avenue toward conversion and utilization of CNTs.

13.
Environ Sci Pollut Res Int ; 27(35): 43656-43669, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737782

RESUMO

This study aims at investigating the electrocatalytic oxidation of sodium pentachlorophenate (PCP-Na) using a novel nano-PbO2 powder anode. The nano-PbO2 powder (marked as HL-PbO2) was prepared by a simple hydrolysis process, and hydrothermal treatment was followed to improve the activity of HL-PbO2. The HL-PbO2 treated for 24 h by hydrothermal process (HL/HT-PbO2-24) was confirmed to possess higher crystallinity, higher oxygen evolution potential, and more active sites, resulting in stronger OH radical generation capacity and higher electrochemical activity. Compared with conventional electrodeposited PbO2 (ED-PbO2) anode, the HL/HT-PbO2-24 anode showed higher PCP-Na degradation rate. Under the same operating conditions, the mineralization current efficiency at HL/HT-PbO2-24 was 2.7 times than that at ED-PbO2. Five intermediates were detected in PCP-Na degradation solution and possible degradation mechanism of PCP-Na was discussed. In addition, the acute toxicity of PCP-Na degradation solution to zebrafish embryos and the oxidative stress induced in zebrafish embryos/larvae were studied to evaluate the ecological security of electrocatalytic oxidation of PCP-Na.


Assuntos
Óxidos , Poluentes Químicos da Água , Animais , Eletrodos , Oxirredução , Titânio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Chemosphere ; 260: 127587, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32663673

RESUMO

In this work, a three-dimension grapnene-PbO2 (3DG-PbO2) composite anode was prepared using coelectrodeposition technology for electrocatalytic oxidation of perfluorooctane sulfonate (PFOS). The effect of 3DG on the surface morphology, structure and electrocatalytic activity of PbO2 electrode was investigated. The results indicated that the 3DG-PbO2-0.08 anode (3DG concentration in electrodeposition solution was 0.08 g L-1) possessed the best electrocatalytic activity due to its stronger ·OH radicals generation capacity, more active sites and smaller charge-transfer resistance. The degradation rate constant of PFOS on 3DG-PbO2-0.08 anode was 2.33 times than that of pure PbO2 anode. Additionally, the by-products formed in electrocatalytic degradation of PFOS were identified and a PFOS degradation pathway was proposed accordingly, which was dominated by the dissociation of -CF2- groups via the attack of ·OH radicals. Finally, the toxicity evolution of degradation solution was examined to evaluate the ecological risk of electrocatalytic oxidation of PFOS by acute toxicity assays to zebrafish embryos.


Assuntos
Ácidos Alcanossulfônicos/análise , Técnicas Eletroquímicas/métodos , Fluorocarbonos/análise , Grafite/química , Chumbo/química , Nanocompostos/química , Óxidos/química , Titânio/química , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Animais , Eletrodos , Galvanoplastia , Embrião não Mamífero/efeitos dos fármacos , Fluorocarbonos/toxicidade , Oxirredução , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
15.
ACS Appl Mater Interfaces ; 12(20): 22552-22559, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32345006

RESUMO

Organic materials that show substantial reactivity under visible light have received considerable attention due to their wide applications in chemical and biological systems. Hemicyanine pigments possess a strong intramolecular donor-acceptor structure and thereby display intense absorption in the visible spectral region. However, most excitons are consumed via the twisted intramolecular charge-transfer (TICT) process, making hemicyanines generally inert to light. Herein, we describe the development of an amphiphilic hemicyanine dye whose aggregation could be easily regulated using salt or counterions. More importantly, its intrinsic photoreactivity was successfully induced by steric restriction and cofacial arrangement within the H-aggregate, thus creating an effective photobactericide. This strategy could be extended to the development of photocatalysts for photosynthesis and a photosensitizer for photodynamic therapy.


Assuntos
Compostos de Anilina/farmacologia , Antibacterianos/farmacologia , Corantes/farmacologia , Estilbenos/farmacologia , Compostos de Anilina/efeitos da radiação , Antibacterianos/efeitos da radiação , Corantes/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Radical Hidroxila/metabolismo , Luz , Testes de Sensibilidade Microbiana , Estilbenos/efeitos da radiação , Tensoativos/farmacologia , Tensoativos/efeitos da radiação
16.
Angew Chem Int Ed Engl ; 58(43): 15532-15540, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31469224

RESUMO

The crystalline cooperativity of the donor and acceptor segment in double-cable conjugated polymers plays an important role in the nanophase separation and photovoltaic performance in single-component organic solar cells (SCOSCs). Two double-cable conjugated polymers with the same conjugated backbone and perylene bisimide (PBI) side units were designed in which PBIs were positioned symmetrically and perpendicularly (P1) and asymmetrically and slantingly (P2) along the conjugated backbones. After thermal annealing, both conjugated backbones and PBI side units in P1 tend to form ordered nanostructures, while PBI side units in P2 dominated the crystallization and hamper the crystallization of conjugated backbones. P1 showed good crystalline cooperativity between conjugated backbones and PBI side units, resulting in improved power conversion efficiencies (PCEs) up to 3.43 % in SCOSCs, while P2 with poor crystalline cooperativity exhibited PCEs below 2.42 %.

17.
ACS Appl Mater Interfaces ; 11(22): 20566-20573, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31082257

RESUMO

The charge-transfer process in transition-metal dichalcogenides (TMDCs) lateral homojunction affects the electron-hole recombination process of in optoelectronic devices. However, the optical properties of the homojunction reflecting the charge-transfer process has not been observed and studied. In this work, we investigated the charge-transfer-induced emission properties based on monolayer (1L)-bilayer (2L) WSe2 lateral homojunction with dozens of nanometer monolayer region. On the one hand, the photoluminescence (PL) emission of bilayer WSe2 from the homojunction area blue shifts ∼23 and ∼31 meV for direct and indirect bandgap emission, respectively, compared with the bare WSe2 bilayer region. The blue shift of the emission spectrum in the bilayer WSe2 is ascribed to the decrease in binding energy induced by charge transfer from monolayer to bilayer. On the other hand, the energy shift shows a tendency to increase as the temperature decreases. The energy blue shift is ∼57 meV for direct bandgap emission at 80 K, which is larger than that (∼23 meV) at room temperature. The larger-energy blue shift at low temperature is derived from the larger driving force under larger band offset. Our observations of the unique optical properties induced by efficient charge transfer are very helpful for exploring novel TMDC-based optoelectronic devices.

18.
J Phys Chem Lett ; 9(7): 1655-1662, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29533623

RESUMO

Mixed-dimensional van der Waals (vdW) heterostructures between one-dimensional (1D) perovskite nanowires and two-dimensional (2D) transition metal dichalcogenides (TMDCs) hold great potential for novel optoelectronics and light-harvesting applications. However, the ultrafast carrier dynamics between the 1D perovskite nanowires and 2D TMDCs are currently not well understood, which is critical for related optoelectronic applications. Here we demonstrate vdW heterostructures of CsPbBr3 nanowire/monolayer MoS2 and CsPbBr3 nanowire/monolayer WSe2 and further present systematic investigations on their charge transfer dynamics. We show that CsPbBr3/MoS2 and CsPbBr3/WSe2 are type-I and type-II heterostructures, respectively. Both electrons and holes transfer from CsPbBr3 to MoS2 with an efficiency of 71%. As a contrast, holes transfer from CsPbBr3 to WSe2 with a carrier transfer efficiency of 70% and electrons transfer inversely within 7 ps. The ultrafast and efficient charge transfer in the 1D/2D perovskite-TMDC heterostructures suggest great promise in light emission, photodetector, and photovoltaic devices.

19.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590583

RESUMO

Nonlinear 2D layered crystals provide ideal platforms for applications and fundamental studies in ultrathin nonlinear optical (NLO) devices. However, the NLO frequency conversion efficiency constrained by lattice symmetry is still limited by layer numbers of 2D crystals. In this work, 3R MoS2 with broken inversion symmetry structure are grown and proved to be excellent NLO 2D crystals from monolayer (0.65 nm) toward bulk-like (300 nm) dimension. Thickness and wavelength-dependent second harmonic generation spectra offer the selection rules of appropriate working conditions. A model comprising of bulk nonlinear contribution and interface interaction is proposed to interpret the observed nonlinear behavior. Polarization enhancement with two petals along staggered stacking direction appears in 3R MoS2 is first observed and the robust polarization of 3R MoS2 crystal is caused by the retained broken inversion symmetry. The results provide a new arena for realizing ultrathin NLO devices for 2D layered materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...