Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 23(3): e12895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837620

RESUMO

Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.


Assuntos
Barreira Hematoencefálica , Distrofina , Distrofia Muscular de Duchenne , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Distrofina/genética , Distrofina/metabolismo , Masculino , Camundongos Endogâmicos mdx , Camundongos Endogâmicos C57BL , Aquaporina 4/genética , Aquaporina 4/metabolismo , Memória de Curto Prazo , Memória
2.
Nucleic Acid Ther ; 34(1): 26-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386285

RESUMO

Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. In vivo SPECT imaging showed 111In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The 111In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of 111In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Éxons , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Injeções Espinhais
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166987, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070582

RESUMO

Initial cysts that are formed upon Pkd1 loss in mice impose persistent stress on surrounding tissue and trigger a cystic snowball effect, in which local aberrant PKD-related signaling increases the likelihood of new cyst formation, ultimately leading to accelerated disease progression. Although many pathways have been associated with PKD progression, the knowledge of early changes near initial cysts is limited. To perform an unbiased analysis of transcriptomic alterations in the cyst microenvironment, microdomains were collected from kidney sections of iKsp-Pkd1del mice with scattered Pkd1-deletion using Laser Capture Microdissection. These microdomains were defined as F4/80-low cystic, representing early alterations in the cyst microenvironment, F4/80-high cystic, with more advanced alterations, or non-cystic. RNA sequencing and differential gene expression analysis revealed 953 and 8088 dysregulated genes in the F4/80-low and F4/80-high cyst microenvironment, respectively, when compared to non-cystic microdomains. In the early cyst microenvironment, several injury-repair, growth, and tissue remodeling-related pathways were activated, accompanied by mild metabolic changes. In the more advanced F4/80-high microdomains, these pathways were potentiated and the metabolism was highly dysregulated. Upstream regulator analysis revealed a series of paracrine factors with increased activity in the early cyst microenvironment, including TNFSF12 and OSM. In line with the upstream regulator analysis, TWEAK and Oncostatin-M promoted cell proliferation and inflammatory gene expression in renal epithelial cells and fibroblasts in vitro. Collectively, our data provide an overview of molecular alterations that specifically occur in the cyst microenvironment and identify paracrine factors that may mediate early and advanced alterations in the cyst microenvironment.


Assuntos
Cistos , Doenças Renais Policísticas , Camundongos , Animais , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Rim/metabolismo , Perfilação da Expressão Gênica , Cistos/genética , Microambiente Tumoral
5.
Neurobiol Dis ; 190: 106368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040383

RESUMO

In Huntington disease, cellular toxicity is particularly caused by toxic protein fragments generated from the mutant huntingtin (HTT) protein. By modifying the HTT protein, we aim to reduce proteolytic cleavage and ameliorate the consequences of mutant HTT without lowering total HTT levels. To that end, we use an antisense oligonucleotide (AON) that targets HTT pre-mRNA and induces partial skipping of exon 12, which contains the critical caspase-6 cleavage site. Here, we show that AON-treatment can partially restore the phenotype of YAC128 mice, a mouse model expressing the full-length human HTT gene including 128 CAG-repeats. Wild-type and YAC128 mice were treated intracerebroventricularly with AON12.1, scrambled AON or vehicle starting at 6 months of age and followed up to 12 months of age, when MRI was performed and mice were sacrificed. AON12.1 treatment induced around 40% exon skip and protein modification. The phenotype on body weight and activity, but not rotarod, was restored by AON treatment. Genes differentially expressed in YAC128 striatum changed toward wild-type levels and striatal volume was preserved upon AON12.1 treatment. However, scrambled AON also showed a restorative effect on gene expression and appeared to generally increase brain volume.


Assuntos
Doença de Huntington , Animais , Humanos , Camundongos , Caspase 6/genética , Caspase 6/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Fenótipo
7.
Acta Neuropathol Commun ; 11(1): 128, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550790

RESUMO

Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood-brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell-endothelial cell signalling leading to blood-brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood-brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood-brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood-brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood-brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood-brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Células Precursoras de Oligodendrócitos , Substância Branca , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Substância Branca/patologia , Hipóxia/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Brain Pathol ; 33(4): e13158, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36974379

RESUMO

Neuroinflammation has been implicated in frontotemporal lobar degeneration (FTLD) pathophysiology, including in genetic forms with microtubule-associated protein tau (MAPT) mutations (FTLD-MAPT) or chromosome 9 open reading frame 72 (C9orf72) repeat expansions (FTLD-C9orf72). Iron accumulation as a marker of neuroinflammation has, however, been understudied in genetic FTLD to date. To investigate the occurrence of cortical iron accumulation in FTLD-MAPT and FTLD-C9orf72, iron histopathology was performed on the frontal and temporal cortex of 22 cases (11 FTLD-MAPT and 11 FTLD-C9orf72). We studied patterns of cortical iron accumulation and its colocalization with the corresponding underlying pathologies (tau and TDP-43), brain cells (microglia and astrocytes), and myelination. Further, with ultrahigh field ex vivo MRI on a subset (four FTLD-MAPT and two FTLD-C9orf72), we examined the sensitivity of T2*-weighted MRI for iron in FTLD. Histopathology showed that cortical iron accumulation occurs in both FTLD-MAPT and FTLD-C9orf72 in frontal and temporal cortices, characterized by a diffuse mid-cortical iron-rich band, and by a superficial cortical iron band in some cases. Cortical iron accumulation was associated with the severity of proteinopathy (tau or TDP-43) and neuronal degeneration, in part with clinical severity, and with the presence of activated microglia, reactive astrocytes and myelin loss. Ultra-high field T2*-weighted MRI showed a good correspondence between hypointense changes on MRI and cortical iron observed on histology. We conclude that iron accumulation is a feature of both FTLD-MAPT and FTLD-C9orf72 and is associated with pathological severity. Therefore, in vivo iron imaging using T2*-weighted MRI or quantitative susceptibility mapping may potentially be used as a noninvasive imaging marker to localize pathology in FTLD.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Proteína C9orf72/genética , Doenças Neuroinflamatórias , Progranulinas , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Proteínas tau/metabolismo , Proteínas de Ligação a DNA/metabolismo
9.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559291

RESUMO

Here, we describe the synthesis of a novel type of rare-earth-doped nanoparticles (NPs) for multimodal imaging, by combining the rare-earth elements Ce, Gd and Nd in a crystalline host lattice consisting of CaF2 (CaF2: Ce, Gd, Nd). CaF2: Ce, Gd, Nd NPs are small (15-20 nm), of uniform shape and size distribution, and show good biocompatibility and low immunogenicity in vitro. In addition, CaF2: Ce, Gd, Nd NPs possess excellent optical properties. CaF2: Ce, Gd, Nd NPs produce downconversion emissions in the second near-infrared window (NIR-II, 1000-1700 nm) under 808 nm excitation, with a strong emission peak at 1056 nm. Excitation in the first near- infrared window (NIR-I, 700-900 nm) has the advantage of deeper tissue penetration power and reduced autofluorescence, compared to visible light. Thus, CaF2: Ce, Gd, Nd NPs are ideally suited for in vivo fluorescence imaging. In addition, the presence of Gd3+ makes the NPs intrinsically monitorable by magnetic resonance imaging (MRI). Moreover, next to fluorescence and MR imaging, our results show that CaF2: Ce, Gd, Nd NPs can be used as imaging probes for photoacoustic imaging (PAI) in vitro. Therefore, due to their biocompatibility and suitability as multimodal imaging probes, CaF2: Ce, Gd, Nd NPs exhibit great potential as a traceable imaging agent in biomedical applications.

10.
Pharmaceutics ; 14(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456674

RESUMO

Nowadays, cancer poses a significant hazard to humans. Limitations in early diagnosis techniques not only result in a waste of healthcare resources but can even lead to delays in diagnosis and treatment, consequently reducing cure rates. Therefore, it is crucial to develop an imaging probe that can provide diagnostic information precisely and rapidly. Here, we used a simple hydrothermal method to design a multimodal imaging probe based on the excellent properties of rare-earth ions. Calcium fluoride co-doped with ytterbium, gadolinium, and neodymium (CaF2:Y,Gd,Nd) nanoparticles (NPs) is highly crystalline, homogeneous in morphology, and displays a high biosafety profile. In addition, in vitro and ex vivo experiments explored the multimodal imaging capability of CaF2:Y,Gd,Nd and demonstrated the efficient performance of CaF2:Y,Gd,Nd during NIR-II fluorescence/photoacoustic/magnetic resonance imaging. Collectively, our novel diagnosis nanoparticle will generate new ideas for the development of multifunctional nanoplatforms for disease diagnosis and treatment.

11.
Front Neurosci ; 15: 604103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642975

RESUMO

Chronic exposure to high circulating levels of glucocorticoids has detrimental effects on health, including metabolic abnormalities, as exemplified in Cushing's syndrome (CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in gray and white matter of the brain in CS patients during the course of active disease, but also in remission. In order to explore this further, we performed MRI-based brain volumetric analyses in the AdKO mouse model for CS, which presents its key traits. AdKO mice had reduced relative volumes in several brain regions, including the corpus callosum and cortical areas. The medial amygdala, bed nucleus of the stria terminalis, and hypothalamus were increased in relative volume. Furthermore, we found a lower immunoreactivity of myelin basic protein (MBP, an oligodendrocyte marker) in several brain regions but a paradoxically increased MBP signal in the male cingulate cortex. We also observed a decrease in the expression of glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) and ionized calcium-binding adapter molecule 1 (IBA1, a marker for activated microglia) in the cingulate regions of the anterior corpus callosum and the hippocampus. We conclude that long-term hypercorticosteronemia induced brain region-specific changes that might include aberrant myelination and a degree of white matter damage, as both repair (GFAP) and immune (IBA1) responses are decreased. These findings suggest a cause for the changes observed in the brains of human patients and serve as a background for further exploration of their subcellular and molecular mechanisms.

12.
Elife ; 102021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33577447

RESUMO

Impaired cerebrovascular function is an early biomarker for cerebral amyloid angiopathy (CAA), a neurovascular disease characterized by amyloid-ß accumulation in the cerebral vasculature, leading to stroke and dementia. The transgenic Swedish Dutch Iowa (Tg-SwDI) mouse model develops cerebral microvascular amyloid-ß deposits, but whether this leads to similar functional impairments is incompletely understood. We assessed cerebrovascular function longitudinally in Tg-SwDI mice with arterial spin labeling (ASL)-magnetic resonance imaging (MRI) and laser Doppler flowmetry (LDF) over the course of amyloid-ß deposition. Unexpectedly, Tg-SwDI mice showed similar baseline perfusion and cerebrovascular reactivity estimates as age-matched wild-type control mice, irrespective of modality (ASL or LDF) or anesthesia (isoflurane or urethane and α-chloralose). Hemodynamic changes were, however, observed as an effect of age and anesthesia. Our findings contradict earlier results obtained in the same model and question to what extent microvascular amyloidosis as seen in Tg-SwDI mice is representative of cerebrovascular dysfunction observed in CAA patients.


Assuntos
Angiopatia Amiloide Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos
13.
Cell Tissue Res ; 381(1): 55-69, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32036485

RESUMO

Traumatic brain injury (TBI) is a devastating event for which current therapies are limited. Stem cell transplantation may lead to recovery of function via different mechanisms, such as cell replacement through differentiation, stimulation of angiogenesis and support to the microenvironment. Adult hair follicle bulge-derived stem cells (HFBSCs) possess neuronal differentiation capacity, are easy to harvest and are relatively immune-privileged, which makes them potential candidates for autologous stem cell-based therapy. In this study, we apply in vivo multimodal, optical and magnetic resonance imaging techniques to investigate the behavior of mouse HFBSCs in a mouse model of TBI. HFBSCs expressed Luc2 and copGFP and were examined for their differentiation capacity in vitro. Subsequently, transduced HFBSCs, preloaded with ferumoxytol, were transplanted next to the TBI lesion (cortical region) in nude mice, 2 days after injury. Brains were fixed for immunohistochemistry 58 days after transplantation. Luc2- and copGFP-expressing, ferumoxytol-loaded HFBSCs showed adequate neuronal differentiation potential in vitro. Bioluminescence of the lesioned brain revealed survival of HFBSCs and magnetic resonance imaging identified their localization in the area of transplantation. Immunohistochemistry showed that transplanted cells stained for nestin and neurofilament protein (NF-Pan). Cells also expressed laminin and fibronectin but extracellular matrix masses were not detected. After 58 days, ferumoxytol could be detected in HFBSCs in brain tissue sections. These results show that HFBSCs are able to survive after brain transplantation and suggest that cells may undergo differentiation towards a neuronal cell lineage, which supports their potential use for cell-based therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Folículo Piloso/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco
14.
Neuroimage Clin ; 28: 102498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33395988

RESUMO

Previous MRI studies consistently reported iron accumulation within the striatum of patients with Huntington's disease (HD). However, the pattern and origin of iron accumulation is poorly understood. This study aimed to characterize the histopathological correlates of iron-sensitive ex vivo MRI contrast change in HD brains. To this end, T2*-weighted 7T MRI was performed on postmortem tissue of the striatum of three control subjects and 10 HD patients followed by histological examination. In addition, formalin-fixed paraffin-embedded material of three control subjects and 14 HD patients was selected for only histology to identify the cellular localization of iron using stainings for iron, myelin, microglia and astrocytes. As expected HD striata showed prominent atrophy. Compared to controls, the striatum of HD patients was in general more hypointense on T2*-weighted high-field MRI and showed a more intense histopathological staining for iron. In addition, T2*-weighted MRI identified large focal hypointensities within the striatum of HD patients. Upon histological examination, these large focal hypointensities frequently colocalized with enlarged perivascular spaces and iron was found within the vessel wall and reactive astrocytes. In conclusion, we show that the striatum of HD patients has a distinctive phenotype on T2*-weighted MRI compared to control subjects. On ex vivo MRI, these contrast changes are heavily biased by enlarged perivascular spaces from which it is currently unknown whether this is a fixation artefact or a disease specific observation. Clinically, the observation of iron within reactive astrocytes is of importance for the interpretation and understanding of the potential underlying mechanisms of T2*-weighted MRI results in HD patients.


Assuntos
Doença de Huntington , Corpo Estriado/diagnóstico por imagem , Substância Cinzenta , Humanos , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética , Bainha de Mielina
15.
NMR Biomed ; 32(8): e4105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31172591

RESUMO

Arterial spin labeling (ASL)-MRI can noninvasively map cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), potential biomarkers of cognitive impairment and dementia. Mouse models of disease are frequently used in translational MRI studies, which are commonly performed under anesthesia. Understanding the influence of the specific anesthesia protocol used on the measured parameters is important for accurate interpretation of hemodynamic studies with mice. Isoflurane is a frequently used anesthetic with vasodilative properties. Here, the influence of three distinct isoflurane protocols was studied with pseudo-continuous ASL in two different mouse strains. The first protocol was a free-breathing set-up with medium concentrations, the second a free-breathing set-up with low induction and maintenance concentrations, and the third a set-up with medium concentrations and mechanical ventilation. A protocol with the vasoconstrictive anesthetic medetomidine was used as a comparison. As expected, medium isoflurane anesthesia resulted in significantly higher CBF and lower CVR values than medetomidine (median whole-brain CBF of 157.7 vs 84.4 mL/100 g/min and CVR of 0.54 vs 51.7% in C57BL/6 J mice). The other two isoflurane protocols lowered the CBF and increased the CVR values compared with medium isoflurane anesthesia, without obvious differences between them (median whole-brain CBF of 138.9 vs 131.7 mL/100 g/min and CVR of 10.0 vs 9.6%, in C57BL/6 J mice). Furthermore, CVR was shown to be dependent on baseline CBF, regardless of the anesthesia protocol used.


Assuntos
Anestesia , Encéfalo/fisiologia , Artérias Cerebrais/fisiologia , Hemodinâmica/efeitos dos fármacos , Isoflurano/farmacologia , Marcadores de Spin , Animais , Encéfalo/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL
16.
NMR Biomed ; 31(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160952

RESUMO

The cerebral blood flow (CBF) is a potential biomarker for neurological disease. However, the arterial transit time (ATT) of the labeled blood is known to potentially affect CBF quantification. Furthermore, ATT could be an interesting biomarker in itself, as it may reflect underlying macro- and microvascular pathologies. Currently, no optimized magnetic resonance imaging (MRI) sequence exists to measure ATT in mice. Recently, time-encoded labeling schemes have been implemented in rats and humans, enabling ATT mapping with higher signal-to-noise ratio (SNR) and shorter scan time than multi-delay arterial spin labeling (ASL). In this study, we show that time-encoded pseudo-continuous arterial spin labeling (te-pCASL) also enables transit time measurements in mice. As an optimal design that takes the fast blood flow in mice into account, time encoding with 11 sub-boli of 50 ms is proposed to accurately probe the inflow of labeled blood. For perfusion imaging, a separate, traditional pCASL scan was employed. From the six studied brain regions, the hippocampus showed the shortest ATT (169 ± 11 ms) and the auditory/visual cortex showed the longest (284 ± 16 ms). Furthermore, ATT was found to be preserved in old wild-type mice. In a mouse with an induced carotid artery occlusion, prolongation of ATT was shown. In conclusion, this study shows the successful implementation of te-pCASL in mice, making it possible, for the first time, to measure ATT in mice in a time-efficient manner.


Assuntos
Artérias/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Envelhecimento/fisiologia , Animais , Arteriopatias Oclusivas/fisiopatologia , Artérias Carótidas/fisiopatologia , Imageamento por Ressonância Magnética , Camundongos , Processamento de Sinais Assistido por Computador , Fatores de Tempo
17.
FEBS J ; 282(18): 3618-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147692

RESUMO

UNLABELLED: Accumulation and aggregation of the amyloid-ß (Aß) peptide is associated with Alzheimer's disease (AD). Aß is generated from the amyloid precursor protein by the successive action of two membrane-associated processing enzymes: ß-secretase or ß-site of amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase. Inhibition of one or both of these enzymes prevents Aß generation and the accompanying Aß accumulation. Antigen binding fragments from camelid heavy chain only antibodies (VHHs) were found to exert excellent enzyme inhibition activity. In the present study, we generated VHHs against BACE1 by active immunization of Lama glama with the recombinant BACE1 protein. Two classes of VHHs were selected from a VHH-phage display library by competitive elution with a peptide encoding the Swedish mutation variant of the BACE1 processing site. One VHH was found to inhibit the enzyme activity of BACE1 in vitro and in cell culture, whereas two other VHHs were found to stimulate BACE1 activity under the same conditions in vitro. Furthermore, an in vivo study with a transgenic AD mouse model, using intracisternal injection of the inhibitory VHH, led to acute reduction of the Aß load in the blood and brain. This inhibitory VHH may be considered as a candidate molecule for a therapy directed towards reduction of Aß load and prevention of AD progression. Both the inhibitory and stimulatory VHH may be useful for improving our understanding of the structure-function relationship of BACE1, as well as its role in AD progression. DATABASE: The GenBank sequence accession numbers are KR363186 for VHH B1a; KR363187 for VHH B3a; and KR363188 for VHH B5a.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/imunologia , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/imunologia , Camelídeos Americanos/imunologia , Fragmentos de Imunoglobulinas/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Fragmentos de Imunoglobulinas/administração & dosagem , Cadeias Pesadas de Imunoglobulinas/administração & dosagem , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Vacinação
18.
Front Cell Neurosci ; 8: 274, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249937

RESUMO

Thrombolysis remains the only beneficial therapy for ischemic stroke, but is restricted to a short therapeutic window following the infarct. Currently research is focusing on spontaneous regenerative processes during the sub-acute and chronic phase. Angiogenesis, the formation of new blood vessels from pre-existing ones, was observed in stroke patients, correlates with longer survival and positively affects the formation of new neurons. Angiogenesis takes place in the border zones of the infarct, but further insight into the temporal profile is needed to fully apprehend its therapeutic potential and its relevance for neurogenesis and functional recovery. Angiogenesis is a multistep process, involving extracellular matrix degradation, endothelial cell proliferation, and, finally, new vessel formation. Interaction between vascular endothelial growth factor and its receptor 2 (VEGFR2) plays a central role in these angiogenic signaling cascades. In the present study we investigated non-invasively the dynamics of VEGFR2 expression following cerebral ischemia in a mouse model of middle cerebral artery occlusion (MCAO). We used a transgenic mouse expressing firefly luciferase under the control of the VEGFR2 promotor to non-invasively elucidate the temporal profile of VEGFR2 expression after stroke as a biomarker for VEGF/VEGFR2 signaling. We measured each animal repetitively up to 2 weeks after stroke and found increased VEGFR2 expression starting 3 days after the insult with peak values at 7 days. These were paralleled by increased VEGFR2 protein levels and increased vascular volume in peri-infarct areas at 14 days after the infarct, indicating that signaling via VEGFR2 leads to successful vascular remodeling. This study describes VEGFR2-related signaling is active at least up to 2 weeks after the infarct and results in increased vascular volume. Further, this study presents a novel strategy for the non-invasive evaluation of angiogenesis-based therapies.

19.
Pediatr Crit Care Med ; 14(5): e243-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23867445

RESUMO

OBJECTIVE: To determine biventricular cardiac function in pneumovirus-induced acute lung injury in spontaneously breathing mice. DESIGN: Experimental animal study. SETTING: Animal laboratory. SUBJECTS: C57Bl/6 mice. INTERVENTION: Mice were inoculated with the rodent pneumovirus, pneumonia virus of mice. MEASUREMENTS AND MAIN RESULTS: Pneumonia virus of mice-infected mice were studied for right and left ventricular function variables by high-field strength (7 Tesla) cardiac MRI at specific time points during the course of disease compared with baseline. One day before and at peak disease severity, pneumonia virus of mice-infected mice showed significant right and left ventricular systolic and diastolic volume changes, with a progressive decrease in stroke volume and ejection fraction. No evidence for viral myocarditis or viral presence in heart tissue was found. CONCLUSIONS: These findings show adverse pulmonary-cardiac interaction in pneumovirus-induced acute lung injury, unrelated to direct virus-mediated effects on the heart.


Assuntos
Lesão Pulmonar Aguda/etiologia , Citocinas/sangue , Infecções por Pneumovirus/complicações , Disfunção Ventricular/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Volume Sistólico , Disfunção Ventricular/fisiopatologia
20.
J Proteome Res ; 11(8): 4315-25, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22768796

RESUMO

To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of neurological symptoms, and proteomics analysis was performed using nano-LC-Orbitrap mass spectrometry. Additionally, the minocycline concentration in CSF was determined using quantitative matrix-assisted laser desorption/ionization-triple-quadrupole tandem mass spectrometry (MALDI-MS/MS) in the selected reaction monitoring (SRM) mode. Fifty percent of the minocycline-treated EAE animals did not show neurological symptoms on day 14 ("responders"), while the other half displayed neurological symptoms ("nonresponders"), indicating that minocycline delayed disease onset and attenuated disease severity in some, but not all, animals. Neither CSF nor plasma minocycline concentrations correlated with the onset of symptoms or disease severity. Analysis of the proteomics data resulted in a list of 20 differentially abundant proteins between the untreated animals and the responder group of animals. Two of these proteins, complement C3 and carboxypeptidase B2, were validated by quantitative LC-MS/MS in the SRM mode. Differences in the CSF proteome between untreated EAE animals and minocycline-treated responders were similar to the differences between minocycline-treated responders and nonresponders (70% overlap). Six proteins that remained unchanged in the minocycline-treated animals but were elevated in untreated EAE animals may be related to the mechanism of action of minocycline.


Assuntos
Proteínas do Líquido Cefalorraquidiano/líquido cefalorraquidiano , Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , Minociclina/farmacologia , Esclerose Múltipla/líquido cefalorraquidiano , Fármacos Neuroprotetores/farmacologia , Proteoma/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Carboxipeptidase B/líquido cefalorraquidiano , Complemento C3/líquido cefalorraquidiano , Encefalomielite Autoimune Experimental/tratamento farmacológico , Adjuvante de Freund/farmacologia , Masculino , Minociclina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...