Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 28(14): 2779-84, 1989 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20555598

RESUMO

Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO(x)N(y)) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound.

2.
Adv Space Res ; 4(12): 59-68, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-11537796

RESUMO

A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from x-ray to microwave frequencies. Values of n (approximately equal to 1.65) and k (approximately equal to 0.004 to 0.08) in the visible are consistent with deductions made by ground-based and spaceborne observations of Titan. Many infrared absorption features are present in k (lambda), including the 4.6 micrometers nitrile band. Molecular analysis of the volatile component of this tholin was performed by sequential and non-sequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition, acid hydrolysis produces a racemic mixture of biological and non-biological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.


Assuntos
Aerossóis/química , Atmosfera , Meio Ambiente Extraterreno , Modelos Químicos , Polímeros/química , Saturno , Aerossóis/análise , Astronomia/instrumentação , Astronomia/métodos , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Metano/química , Nitrogênio/química , Origem da Vida , Polímeros/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...