Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 30039-30051, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37309875

RESUMO

Amorphous polymer-derived silicon-oxycarbide (SiOC) ceramics have a high theoretical capacity and good structural stability, making them suitable anode materials for lithium-ion batteries. However, SiOC has low electronic conductivity, poor transport properties, low initial Couloumbic efficiency, and limited rate capability. Therefore, there is an urgent need to explore an efficient SiOC-based anode material that could mitigate the abovementioned limitations. In this study, we synthesized carbon-rich SiOC (SiOC-I) and silicon-rich SiOC (SiOC-II) and evaluated their elemental and structural characteristics using a broad spectrum of characterization techniques. Li-ion cells were fabricated for the first time by pairing a buckypaper composed of carbon nanotubes with SiOC-I or SiOC-II as the anode. When mixed with graphene nanoplatelets, the SiOC-II/GNP composites exhibited improved electrochemical performance. High specific capacity (average specific capacity of 744 mAh/g at a 0.1C rate) was achieved with the composite anode (25 wt % SiOC-II and 75% GNP), which was much better than that of monolithic SiOC-I, SiOC-II, or GNPs. This composite also exhibited excellent cycling stability, achieving 344 mAh/g after 260 cycles at a 0.5C rate and high reversibility. The enhanced electrochemical performance is attributed to better electronic conductivity, lower charge-transfer resistance, and short ion diffusion length. Due to their superior electrochemical performance, SiOC/GNP composites with CNT buckypaper as a current collector can be considered a promising anode material for LiBs.

2.
Sci Rep ; 8(1): 17633, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518866

RESUMO

Understanding the role of graphene in the thermal stability and pore morphology of polymer derived silicon oxycarbide is crucial for electrochemical energy storage and hydrogen storage applications. Here in this work, we report the synthesis of graphene nanoplatelets dispersed silicon oxycarbide ceramics by the polymer to ceramic synthesis route. Samples containing graphene and without graphene are subjected to different pyrolysis conditions and are characterized using FT-IR, XPS, Raman spectroscopy, XRD, FE-SEM, HR-TEM, and BET. The results show that the graphene dispersed in the ceramic has undergone structural distortions upon pyrolysis and resulted in the formation of nanoclusters of graphene and turbostratic graphene. The XRD results confirm that with the incorporation of higher wt.% of GNP there is resistance to crystallization even at an exceedingly high pyrolysis temperature. The pores are bimodal in nature with specific surface area ranging between 22 and 70 m2/g and are generated in-situ during the polymer to ceramic conversion. Our study confirms that upon adjusting the graphene content it is possible to tune the structure and pore morphology of the polymer derived ceramics as per the requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...