Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7619, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556584

RESUMO

Acute respiratory infection (ARI) is a communicable disease of the respiratory tract that implies impaired breathing. The infection can expand from one to the neighboring areas at a region-scale level through a human mobility network. Specific to this study, we leverage a record of ARI incidences in four periods of outbreaks for 42 regions in Jakarta to study its spatio-temporal spread using the concept of the epidemic forest. This framework generates a forest-like graph representing an explicit spread of disease that takes the onset time, spatio-temporal distance, and case prevalence into account. To support this framework, we use logistic curves to infer the onset time of the outbreak for each region. The result shows that regions with earlier onset dates tend to have a higher burden of cases, leading to the idea that the culprits of the disease spread are those with a high load of cases. To justify this, we generate the epidemic forest for the four periods of ARI outbreaks and identify the implied dominant trees (that with the most children cases). We find that the primary infected city of the dominant tree has a relatively higher burden of cases than other trees. In addition, we can investigate the timely ( R t ) and spatial reproduction number ( R c ) by directly evaluating them from the inferred graphs. We find that R t for dominant trees are significantly higher than non-dominant trees across all periods, with regions in western Jakarta tend to have higher values of R c . Lastly, we provide simulated-implied graphs by suppressing 50% load of cases of the primary infected city in the dominant tree that results in a reduced R c , suggesting a potential target of intervention to depress the overall ARI spread.


Assuntos
Epidemias , Infecções Respiratórias , Criança , Humanos , Indonésia/epidemiologia , Infecções Respiratórias/epidemiologia , Surtos de Doenças , Cidades
2.
Heliyon ; 9(9): e20009, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809646

RESUMO

Objectives: Primary and booster vaccinations are crucial in COVID-19 control. This study aimed to assess the minimum booster coverage to hamper potential surge of COVID-19 cases in 2023 in Indonesia, a low-resource setting country. Methods: We used a modified SEIR compartment model to assess different scenarios in booster coverage across West Java population: 35%, 50%, and 70%. We fitted the model, then we calculated the potential active cases in 2023 if each scenario was met before 2022 ends. A heat map of predicted cases from various booster coverages and time frames was produced and matched with vaccination rate's function to determine feasible time frames. Results: A minimum of 70% booster coverage in West Java is needed to reduce 90% of potential COVID-19 cases and avert possible surge in 2023. The booster doses should be distributed before February 2023 to achieve its optimum preventive effect. Delays in achieving minimum booster coverage is acceptable, but higher booster coverage will be required. Conclusions: For better COVID-19 control in Indonesia, booster vaccination is warranted, as presented by a case study in West Java. Sufficient vaccine supplies, infrastructure, and healthcare workers should be ensured to support a successful booster vaccination program.

3.
Trop Med Infect Dis ; 7(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36288030

RESUMO

When it comes to understanding the spread of COVID-19, recent studies have shown that pathogens can be transmitted in two ways: direct contact and airborne pathogens. While the former is strongly related to the distancing behavior of people in society, the latter are associated with the length of the period in which the airborne pathogens remain active. Considering those facts, we constructed a compartmental model with a time-dependent transmission rate that incorporates the two sources of infection. This paper provides an analytical and numerical study of the model that validates trivial insights related to disease spread in a responsive society. As a case study, we applied the model to the COVID-19 spread data from a university environment, namely, the Institut Teknologi Bandung, Indonesia, during its early reopening stage, with a constant number of students. The results show a significant fit between the rendered model and the recorded cases of infections. The extrapolated trajectories indicate the resurgence of cases as students' interaction distance approaches its natural level. The assessment of several strategies is undertaken in this study in order to assist with the school reopening process.

4.
Vaccines (Basel) ; 9(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066317

RESUMO

With a limited number of vaccines and healthcare capacity shortages, particularly in low- and middle-income countries, vaccination programs should seek the most efficient strategy to reduce the negative impact of the COVID-19 pandemics. This study aims at assessing several scenarios of delivering the vaccine to people in Indonesia. We develop a model for several scenarios of delivering vaccines: without vaccination, fair distribution, and targeted distribution to five and eight districts with the highest COVID-19 incidence in West Java, one of the most COVID-19-affected regions in Indonesia. We calculate the needs of vaccines and healthcare staff for the program, then simulate the model for the initial 4-month and one-year scenarios. A one-year vaccination program would require 232,000 inoculations per day by 4833 vaccinators. Targeted vaccine allocation based on the burden of COVID-19 cases could benefit the COVID-19 vaccination program by lowering at least 5000 active cases. The benefits would increase by improving the number of vaccines and healthcare staff. Amidst lacking available vaccines, targeted vaccine allocation based on the burden of COVID-19 cases could increase the benefit of the COVID-19 vaccination program but still requires progressive efforts to improve healthcare capacity and vaccine availability for optimal protection for people.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...