Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 528(7): 1140-1156, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721194

RESUMO

Neural circuits in the adult nervous system are characterized by stable, cell type-specific patterns of synaptic connectivity. In many parts of the nervous system these patterns are established during development through initial over-innervation by multiple pre- or postsynaptic targets, followed by a process of refinement that takes place during development and is in many instances activity dependent. Here we report on an identified synapse in the mouse retina, the cone photoreceptor➔type 4 bipolar cell (BC4) synapse, and show that its development is distinctly different from the common motif of over-innervation followed by refinement. Indeed, the majority of cones are contacted by single BC4 throughout development, but are contacted by multiple BC4s through ongoing dendritic elaboration between 1 and 6 months of age-well into maturity. We demonstrate that cell density drives contact patterns downstream of single cones in Bax null mice and may serve to maintain constancy in both the dendritic and axonal projective field.


Assuntos
Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Sinapses , Animais , Feminino , Masculino , Camundongos , Neurogênese/fisiologia
2.
Mol Vis ; 24: 443-458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30078982

RESUMO

Purpose: The differential adhesion hypothesis states that a cell adhesion code provides cues that direct the specificity of nervous system development. The Down syndrome cell adhesion molecule (DSCAM) and sidekick (SDK) proteins belong to the immunoglobulin superfamily of cell adhesion molecules (CAMs) and provide both attractive and repulsive cues that help to organize the nervous system during development, according to the differential adhesion hypothesis. The zebrafish genome is enriched in dscam and sdk genes, making the zebrafish an excellent model system to further test this hypothesis. The goal of this study is to describe the phylogenetic relationships of the paralogous CAM genes and their spatial expression and co-expression patterns in the embryonic zebrafish retina. Methods: Exon-intron structures, karyotypic locations, genomic context, and amino acid sequences of the zebrafish CAM genes (dscama, dscamb, dscaml1, sdk1a, sdk1b, sdk2a, and sdk2b) were obtained from the Ensembl genome database. The Prosite and SMART programs were used to determine the number and identity of protein domains for each CAM gene. The randomized axelerated maximum likelihood (RaxML) program was used to perform a phylogenetic analysis of the zebrafish CAM genes and orthologs in other vertebrates. A synteny analysis of regions surrounding zebrafish CAM paralogs was performed. Digoxigenin (dig)-labeled cRNA probes for each CAM gene were generated to perform in situ hybridization of retinal cryosections from zebrafish embryos and larvae. Dual in situ hybridization of retinal cryosections from zebrafish larvae was performed with dig- and fluorescein-labeled cRNA probes. Results: We found the studied zebrafish CAM genes encode similar protein domain structures as their corresponding orthologs in mammals and possess similar intron-exon organizations. CAM paralogs were located on different chromosomes. Phylogenetic and synteny analyses provided support for zebrafish dscam and sdk2 paralogs having originated during the teleost genome duplication. We found that dscama and dscamb are co-expressed in the ganglion cell layer (GCL) and the basal portion of the inner nuclear layer (INL), with weak expression in the photoreceptor-containing outer nuclear layer (ONL). Of the dscam genes, only dscamb was strongly expressed in ONL. Sdk1a and sdk1b were co-expressed in the GCL and the basal portion of the INL. Sdk2a and sdk2b also showed co-expression in the GCL and basal portion of the INL. All Sdk genes were expressed in the ciliary marginal zone (CMZ). Dual in situ hybridizations revealed alternating patterns of co-expression and exclusive expression for the dscam and sdk1 paralogs in cells of the GCL and the INL. The same alternating pattern was observed between dscam and sdk2 paralogs and between sdk1 and sdk2 paralogs. The expression of dscaml1 was observed in the INL and the GCL, with some cells in the basal portion of the INL showing co-expression of dscaml1 and dscama. Conclusions: These findings suggest that zebrafish dscam and sdk2 paralogs were likely the result of the teleost whole genome duplication and that all CAM duplicates show some differential expression patterns. We also demonstrate that the comparative expression patterns of CAM genes in the zebrafish are distinct from the exclusive expression patterns observed in chick retina, in which retinal ganglion cells express one of the four chick Dscam or Sdk genes only. The patterns in zebrafish are more similar to those of mice, in which co-expression of Dscam and Sdk genes is observed. These findings provide the groundwork for future functional analysis of the roles of the CAM paralogs in zebrafish.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Moléculas de Adesão de Célula Nervosa/genética , Células Ganglionares da Retina/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Galinhas , Sequência Conservada , Embrião não Mamífero , Proteínas do Olho/metabolismo , Duplicação Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese/genética , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Ganglionares da Retina/citologia , Sintenia , Peixe-Zebra/classificação , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(47): E10224-E10233, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114051

RESUMO

Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam-/- OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Dendritos/fisiologia , Plasticidade Neuronal/fisiologia , Regeneração , Células Bipolares da Retina/fisiologia , Animais , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Potenciais Sinápticos/fisiologia
4.
J Exp Zool B Mol Dev Evol ; 326(7): 403-421, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27862951

RESUMO

In this study, we characterize the retina of the spotted gar, Lepisosteus oculatus, a ray-finned fish. Gar did not undergo the whole genome duplication event that occurred at the base of the teleost fish lineage, which includes the model species zebrafish and medaka. The divergence of gars from the teleost lineage and the availability of a high-quality genome sequence make it a uniquely useful species to understand how genome duplication sculpted features of the teleost visual system, including photoreceptor diversity. We developed reagents to characterize the cellular organization of the spotted gar retina, including representative markers for all major classes of retinal neurons and Müller glia. We report that the gar has a preponderance of predicted short-wavelength shifted (SWS) opsin genes, including a duplicated set of SWS1 (ultraviolet) sensitive opsin encoding genes, a SWS2 (blue) opsin encoding gene, and two rod opsin encoding genes, all of which were expressed in retinal photoreceptors. We also report that gar SWS1 cones lack the geometric organization of photoreceptors observed in teleost fish species, consistent with the crystalline photoreceptor mosaic being a teleost innovation. Of note the spotted gar expresses both exo-rhodopsin (RH1-1) and rhodopsin (RH1-2) in rods. Exo-rhodopsin is an opsin that is not expressed in the retina of zebrafish and other teleosts, but rather is expressed in regions of the brain. This study suggests that exo-rhodopsin is an ancestral actinopterygian (ray finned fish) retinal opsin, and in teleosts its expression has possibly been subfunctionalized to the pineal gland.


Assuntos
Evolução Molecular , Peixes/genética , Opsinas/genética , Retina/metabolismo , Opsinas de Bastonetes/genética , Animais , Peixes/metabolismo , Opsinas/metabolismo , Retina/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Opsinas de Bastonetes/metabolismo
5.
Mem Cognit ; 44(7): 1014-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27129921

RESUMO

The efficacy of working-memory training is a topic of considerable debate, with some studies showing transfer to measures such as fluid intelligence while others have not. We report the results of a study designed to examine two forms of working-memory training, one using a spatial n-back and the other a verbal complex span. Thirty-one undergraduates completed 4 weeks of n-back training and 32 completed 4 weeks of verbal complex span training. We also included two active control groups. One group trained on a non-adaptive version of n-back and the other trained on a real-time strategy video game. All participants completed pre- and post-training measures of a large battery of transfer tasks used to create composite measures of short-term and working memory in both verbal and visuo-spatial domains as well as verbal reasoning and fluid intelligence. We only found clear evidence for near transfer from the spatial n-back training to new forms of n-back, and this was the case for both adaptive and non-adaptive n-back.


Assuntos
Memória de Curto Prazo/fisiologia , Prática Psicológica , Transferência de Experiência/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
6.
J Neurosci ; 35(14): 5640-54, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855178

RESUMO

In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.


Assuntos
Moléculas de Adesão Celular/metabolismo , Dendritos/metabolismo , Células Ependimogliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/fisiologia , Retina/citologia , Células Amácrinas/metabolismo , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/genética , Morte Celular/genética , Células Cultivadas , Dendritos/ultraestrutura , Eletrorretinografia , Células Ependimogliais/ultraestrutura , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Rede Nervosa/fisiologia , Neurônios/ultraestrutura , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...