Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 18: 100719, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397200

RESUMO

Model high-protein nutrition bars (HPNBs) were formulated by incorporating whey protein isolate (WPI) and casein (CN) at various extrusion temperatures (50, 75, 100, 125, and 150 °C) with a protein content of 45 g per 100 g. The free sulfhydryl groups, amino groups, hardness, and microstructures of HPNBs were analyzed periodically at 37 °C over a storage period of 45 days. Specifically, sulfhydryl group, amino group and surface hydrophobicity of extruded whey protein isolate (WPE) and extruded casein (CE) were significantly reduced (P < 0.05) compared to those of unextruded protein. HPNBs formulated with WPE (HWPE) and CE (HWCE) exhibited a slower hardening rate compared to those formulated with unmodified protein. Moreover, the color difference, hardness and sensory score of HPNBs after 45 days of storage were used as indicators, and the results of the TOPSIS multiple index analysis indicated that HPNB formulated with WPI extruded at 150 °C possessed the best quality characteristics.

2.
Food Chem ; 429: 136772, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453334

RESUMO

The role of glycyrrhizic acid (GA) on the dynamic stabilization mechanism of the α-Lactalbumin (α-La) emulsion was evaluated in this study. Smaller particle size and higher zeta potential value were observed in the α-La/GA emulsion as compared to the α-La emulsion. Ultra-high-resolution microscopy revealed that the interfacial film formed around oil droplets by α-La/GA complex was thicker compared to that of either α-La or GA. The appearance of a new peak at 1679 cm-1 in FTIR of the α-La/GA emulsion attributed to the stretching vibration of CO, providing evidence of the formation of a stable emulsion system. The results from dynamic molecular simulation showed GA induced the formation of an interfacial adsorption layer at the oil-water interface, reducing the migration ability of GA. The findings indicate that the presence of GA in the α-La emulsion effectively enhances its stability, highlighting its potential as a valuable emulsifying agent for various industrial applications.


Assuntos
Ácido Glicirrízico , Lactalbumina , Emulsões , Adsorção , Tamanho da Partícula , Água
3.
Food Res Int ; 163: 112158, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596109

RESUMO

This study aimed to examine the impact of fermentation process on whey protein and improve the general properties of fermented whey protein concentrate (FWPC) recovered by a combined ultrafiltration-diafiltration (UF-DF) operation. Impacts of sequential ultrasound (US) pretreatment and transglutaminase (TGase) crosslinking on structural, functional, and physicochemical properties of FWPCs were investigated. Partially denatured and hydrolyzed fermented whey protein could replace heat denaturation prior to the TGase addition to a whey protein system. Sequential treatment increased the molecular weight of FWPCs as exhibited by both SEM and SDS-PAGE, which demonstrates that modification can lead to the polymers and oligomers production. The zeta potential value increased significantly after US treatment and enzyme catalysis, and all the modified FWPCs were strongly negatively charged. Compared with the secondary structure of untreated FWPCs, the percentage of α-helix and random coil in modified FWPCs significantly increased, while the percentage of ß-sheet and ß-turns reduced. Solubility, free sulfhydryl groups, and surface hydrophobicity of all FWPCs were significantly improved compared to non-fermented WPC (P < 0.05). Sequential treatment induced a substantial impact on the emulsifying activity and stability of modified samples in comparison with untreated FWPCs. Scanning electron microscope pictures confirmed the positive effects of sequential treatments on texture and void size reduction. Therefore, the application of recovering modified FWPCs is fully recommended as a commercially viable approach for enhanced protein production at the industrial scale.


Assuntos
Polímeros , Transglutaminases , Proteínas do Soro do Leite/química , Transglutaminases/metabolismo , Estrutura Secundária de Proteína , Solubilidade
4.
J Dairy Sci ; 105(1): 83-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635352

RESUMO

This research aimed to advance the understanding of acceptable sensory qualities of potable whey-based spirit from nonsupplemented, mid-supplemented, and high-supplemented whey samples by analyzing major volatile compounds during different stages of distillation (head, heart, and tail). The results demonstrated that commercial Saccharomyces cerevisiae strain in lactase-hydrolyzed whey showed rapid and complete sugar hydrolysis and efficient ethanol production in 24, 30, and 36 h on average, producing up to 29.5, 42.1, and 56.4 g/L of ethanol, respectively. The variations in titratable acidity, specific gravity, pH value, residual protein, sugar content, and alcohol yield were investigated during the fermentation. The total amount of volatile compound concentrations significantly decreased from the head (2,087-2,549 mg/L) to the tail whey spirits (890-1,407 mg/L). In the whey spirit, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-propanol, acetaldehyde, and ethyl acetate were the most prevalent dominant compounds, accounting for the largest proportion of total volatile compounds. The volatile compounds detected were far below the acceptable legal limit. The results suggest that high sensory qualities of potable whey-based spirits can be produced by fermentation of lactose-supplemented whey with S. cerevisiae cells.


Assuntos
Lactose , Soro do Leite , Animais , Destilação , Fermentação , Saccharomyces cerevisiae , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...