Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Endocrinol ; 2014: 535401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25132853

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by tumors in multiple endocrine tissues such as the parathyroid glands, the pituitary gland, and the enteropancreatic neuroendocrine tissues. MEN1 is usually caused by mutations in the MEN1 gene that codes for the protein menin. Menin interacts with proteins that regulate transcription, DNA repair and processing, and maintenance of cytoskeletal structure. We describe the identification of FBP1 as an interacting partner of menin in a large-scale pull-down assay that also immunoprecipitated RBBP5, ASH2, and LEDGF, which are members of complex proteins associated with SET1 (COMPASS), a protein complex that methylates histone H3. This interaction was confirmed by coimmunoprecipitation and Flag-pull-down assays. Furthermore, menin localized to the FUSE site on the MYC promoter, a site that is transactivated by FBP1. This investigation therefore places menin in a pathway that regulates MYC gene expression and has important implications for the biological function of menin.

2.
Proc Natl Acad Sci U S A ; 104(31): 12884-9, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17616579

RESUMO

Recently identified hepatitis C virus (HCV) isolates that are infectious in cell culture provide a genetic system to evaluate the significance of virus-host interactions for HCV replication. We have completed a systematic RNAi screen wherein siRNAs were designed that target 62 host genes encoding proteins that physically interact with HCV RNA or proteins or belong to cellular pathways thought to modulate HCV infection. This includes 10 host proteins that we identify in this study to bind HCV NS5A. siRNAs that target 26 of these host genes alter infectious HCV production >3-fold. Included in this set of 26 were siRNAs that target Dicer, a principal component of the RNAi silencing pathway. Contrary to the hypothesis that RNAi is an antiviral pathway in mammals, as has been reported for subgenomic HCV replicons, siRNAs that target Dicer inhibited HCV replication. Furthermore, siRNAs that target several other components of the RNAi pathway also inhibit HCV replication. MicroRNA profiling of human liver, human hepatoma Huh-7.5 cells, and Huh-7.5 cells that harbor replicating HCV demonstrated that miR-122 is the predominant microRNA in each environment. miR-122 has been previously implicated in positively regulating the replication of HCV genotype 1 replicons. We find that 2'-O-methyl antisense oligonucleotide depletion of miR-122 also inhibits HCV genotype 2a replication and infectious virus production. Our data define 26 host genes that modulate HCV infection and indicate that the requirement for functional RNAi for HCV replication is dominant over any antiviral activity this pathway may exert against HCV.


Assuntos
Hepacivirus/fisiologia , Replicação Viral , Sequência de Bases , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , RNA Interferente Pequeno/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Ann N Y Acad Sci ; 1014: 189-98, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15153434

RESUMO

Multiple endocrine neoplasia type 1 (MEN1), among all syndromes, causes tumors in the highest number of tissue types. Most of the tumors are hormone producing (e.g., parathyroid, enteropancreatic endocrine, anterior pituitary) but some are not (e.g., angiofibroma). MEN1 tumors are multiple for organ type, for regions of a discontinuous organ, and for subregions of a continuous organ. Cancer contributes to late mortality; there is no effective prevention or cure for MEN1 cancers. Morbidities are more frequent from benign than malignant tumor, and both are indicators for screening. Onset age is usually earlier in a tumor type of MEN1 than of nonhereditary cases. Broad trends contrast with those in nonneoplastic excess of hormones (e.g., persistent hyperinsulinemic hypoglycemia of infancy). Most germline or somatic mutations in the MEN1 gene predict truncation or absence of encoded menin. Similarly, 11q13 loss of heterozygosity in tumors predicts inactivation of the other MEN1 copy. MEN1 somatic mutation is prevalent in nonhereditary, MEN1-like tumor types. Compiled germline and somatic mutations show almost no genotype/phenotype relation. Normal menin is 67 kDa, widespread, and mainly nuclear. It may partner with junD, NF-kB, PEM, SMAD3, RPA2, FANCD2, NM23beta, nonmuscle myosin heavy chain II-A, GFAP, and/or vimentin. These partners have not clarified menin's pathways in normal or tumor tissues. Animal models have opened approaches to menin pathways. Local overexpression of menin in Drosophila reveals its interaction with the jun-kinase pathway. The Men1+/- mouse has robust MEN1; its most important difference from human MEN1 is marked hyperplasia of pancreatic islets, a tumor precursor stage.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasia Endócrina Múltipla/genética , Neoplasia Endócrina Múltipla/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Animais , Humanos , Neoplasia Endócrina Múltipla/patologia
4.
Mol Cell Biol ; 23(2): 493-509, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509449

RESUMO

Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Cromatografia em Gel , DNA/metabolismo , Dano ao DNA , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fase G1 , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Neoplasia Endócrina Múltipla/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Proteína de Replicação A , Fase S , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...