Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229072

RESUMO

Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons. Infection of neurons induces deleterious effects on calcium dynamics and electrophysiological function paired with gross restructuring of neuronal morphology. Here, we utilize an iPSC-derived model of the human forebrain to demonstrate how HCMV infection induces syncytia, drives neurite retraction, and remodels microtubule networks to promote viral production and release. We establish that HCMV downregulates microtubule associated proteins at 14 days postinfection while simultaneously sparing other cytoskeletal elements, and this includes HCMV-driven alterations to microtubule stability. Further, we pharmacologically modulate microtubule dynamics using paclitaxel (stabilize) and colchicine (destabilize) to examine the effects on neurite structure, syncytial morphology, assembly compartment formation, and viral release. With paclitaxel, we found improvement of neurite outgrowth with a corresponding disruption to HCMV-induced syncytia formation and Golgi network disruptions but with limited impact on viral titers. Together, these data suggest that HCMV infection-induced disruption of microtubules in human cortical neurons can be partially mitigated with microtubule stabilization, suggesting a potential avenue for future neuroprotective therapeutic exploration.

2.
Fungal Genet Biol ; 120: 9-18, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30130575

RESUMO

Due to the role, both beneficial and harmful, that fungal secondary metabolites play in society, the study of their regulation is of great importance. Genes for any one secondary metabolite are contiguously arranged in a biosynthetic gene cluster (BGC) and subject to regulation through the remodeling of chromatin. Histone modifying enzymes can place or remove post translational modifications (PTM) on histone tails which influences how tight or relaxed the chromatin is, impacting transcription of BGCs. In a recent forward genetic screen, the epigenetic reader SntB was identified as a transcriptional regulator of the sterigmatocystin BGC in A. nidulans, and regulated the related metabolite aflatoxin in A. flavus. In this study we investigate the role of SntB in the plant pathogen A. flavus by analyzing both ΔsntB and overexpression sntB genetic mutants. Deletion of sntB increased global levels of H3K9K14 acetylation and impaired several developmental processes including sclerotia formation, heterokaryon compatibility, secondary metabolite synthesis, and ability to colonize host seeds; in contrast the overexpression strain displayed fewer phenotypes. ΔsntB developmental phenotypes were linked with SntB regulation of NosA, a transcription factor regulating the A. flavus cell fusion cascade.


Assuntos
Aspergillus flavus/fisiologia , Proteínas Fúngicas/fisiologia , Histonas/metabolismo , Fatores de Transcrição/fisiologia , Acetilação , Aflatoxinas/genética , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/patogenicidade , Epigênese Genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Regiões Promotoras Genéticas , Reprodução , Metabolismo Secundário/fisiologia , Sementes/microbiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA