Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Brain Struct Funct ; 222(7): 3295-3307, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28324222

RESUMO

Brain-derived neurotrophic factor (BDNF) is an activity-dependent neurotrophin critical for neuronal plasticity in the hippocampus. BDNF is encoded by multiple transcripts with alternative 5' untranslated regions (5'UTRS) that display activity-induced targeting to distinct subcellular compartments. While individual Bdnf 5'UTR transcripts influence dendrite morphology in cultured hippocampal neurons, it is unknown whether Bdnf splice variants impact dendrite arborization in functional classes of neurons in the intact hippocampus. Moreover, the contribution of Bdnf 5'UTR splice variants to dendritic spine density and shape has not been explored. We analyzed the structure of CA1 and CA3 dendrite arbors in transgenic mice lacking BDNF production from exon (Ex) 1, 2, 4, or 6 splice variants (Bdnf-e1, -e2, -e4, and -e6-/- mice) and found that loss of BDNF from individual Bdnf mRNA variants differentially impacts the complexity of apical and basal arbors in vivo. Consistent with the subcellular localization studies, Bdnf Ex2 and Ex6 transcripts significantly contributed to dendrite morphology in both CA1 and CA3 neurons. While Bdnf-e2-/- mice showed increased branching proximal to the soma in CA1 and CA3 apical arbors, Bdnf-e6-/- mice showed decreased apical and basal dendrite complexity. Analysis of spine morphology on Bdnf-e6-/- CA1 dendrites revealed changes in the percentage of differently sized spines on apical, but not basal, branches. These results provide further evidence that Bdnf splice variants generate a spatial code that mediates the local actions of BDNF in distinct dendritic compartments on structural and functional plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Dendritos/metabolismo , Neurônios/citologia , RNA Mensageiro/genética , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Neuropsychopharmacology ; 41(8): 1943-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26585288

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates diverse biological functions ranging from neuronal survival and differentiation during development to synaptic plasticity and cognitive behavior in the adult. BDNF disruption in both rodents and humans is associated with neurobehavioral alterations and psychiatric disorders. A unique feature of Bdnf transcription is regulation by nine individual promoters, which drive expression of variants that encode an identical protein. It is hypothesized that this unique genomic structure may provide flexibility that allows different factors to regulate BDNF signaling in distinct cell types and circuits. This has led to the suggestion that isoforms may regulate specific BDNF-dependent functions; however, little scientific support for this idea exists. We generated four novel mutant mouse lines in which BDNF production from one of the four major promoters (I, II, IV, or VI) is selectively disrupted (Bdnf-e1, -e2, -e4, and -e6 mice) and used a comprehensive comparator approach to determine whether different Bdnf transcripts are associated with specific BDNF-dependent molecular, cellular, and behavioral phenotypes. Bdnf-e1 and -e2 mutant males displayed heightened aggression accompanied by convergent expression changes in specific genes associated with serotonin signaling. In contrast, BDNF-e4 and -e6 mutants were not aggressive but displayed impairments associated with GABAergic gene expression. Moreover, quantifications of BDNF protein in the hypothalamus, prefrontal cortex, and hippocampus revealed that individual Bdnf transcripts make differential, region-specific contributions to total BDNF levels. The results highlight the biological significance of alternative Bdnf transcripts and provide evidence that individual isoforms serve distinct molecular and behavioral functions.


Assuntos
Agressão , Fator Neurotrófico Derivado do Encéfalo/genética , Regiões Promotoras Genéticas , Serotonina/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipotálamo/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Brain Stimul ; 8(5): 862-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26138027

RESUMO

BACKGROUND: Neurogenesis continues throughout life in the hippocampal dentate gyrus. Chronic treatment with monoaminergic antidepressant drugs stimulates hippocampal neurogenesis, and new neurons are required for some antidepressant-like behaviors. Electroconvulsive seizures (ECS), a laboratory model of electroconvulsive therapy (ECT), robustly stimulate hippocampal neurogenesis. HYPOTHESIS: ECS requires newborn neurons to improve behavioral deficits in a mouse neuroendocrine model of depression. METHODS: We utilized immunohistochemistry for doublecortin (DCX), a marker of migrating neuroblasts, to assess the impact of Sham or ECS treatments (1 treatment per day, 7 treatments over 15 days) on hippocampal neurogenesis in animals receiving 6 weeks of either vehicle or chronic corticosterone (CORT) treatment in the drinking water. We conducted tests of anxiety- and depressive-like behavior to investigate the ability of ECS to reverse CORT-induced behavioral deficits. We also determined whether adult neurons are required for the effects of ECS. For these studies we utilized a pharmacogenetic model (hGFAPtk) to conditionally ablate adult born neurons. We then evaluated behavioral indices of depression after Sham or ECS treatments in CORT-treated wild-type animals and CORT-treated animals lacking neurogenesis. RESULTS: ECS is able to rescue CORT-induced behavioral deficits in indices of anxiety- and depressive-like behavior. ECS increases both the number and dendritic complexity of adult-born migrating neuroblasts. The ability of ECS to promote antidepressant-like behavior is blocked in mice lacking adult neurogenesis. CONCLUSION: ECS ameliorates a number of anxiety- and depressive-like behaviors caused by chronic exposure to CORT. ECS requires intact hippocampal neurogenesis for its efficacy in these behavioral indices.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo/terapia , Eletroconvulsoterapia , Hipocampo/crescimento & desenvolvimento , Neurogênese , Animais , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Proteína Duplacortina , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...