Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36314774

RESUMO

Fast-adapting type 1 (FA-1) and slow-adapting type 1 (SA-1) first-order neurons in the human tactile system have distal axons that branch in the skin and form many transduction sites, yielding receptive fields with many highly sensitive zones or 'subfields.' We previously demonstrated that this arrangement allows FA-1 and SA-1 neurons to signal the geometric features of touched objects, specifically the orientation of raised edges scanned with the fingertips. Here, we show that such signaling operates for fine edge orientation differences (5-20°) and is stable across a broad range of scanning speeds (15-180 mm/s); that is, under conditions relevant for real-world hand use. We found that both FA-1 and SA-1 neurons weakly signal fine edge orientation differences via the intensity of their spiking responses and only when considering a single scanning speed. Both neuron types showed much stronger edge orientation signaling in the sequential structure of the evoked spike trains, and FA-1 neurons performed better than SA-1 neurons. Represented in the spatial domain, the sequential structure was strikingly invariant across scanning speeds, especially those naturally used in tactile spatial discrimination tasks. This speed invariance suggests that neurons' responses are structured via sequential stimulation of their subfields and thus links this capacity to their terminal organization in the skin. Indeed, the spatial precision of elicited action potentials rationally matched spatial acuity of subfield arrangements, which corresponds to a spatial period similar to the dimensions of individual fingertip ridges.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Dedos/fisiologia , Mecanorreceptores/fisiologia
2.
J Neurophysiol ; 120(5): 2423-2429, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133382

RESUMO

Previous studies investigating the perceptual attributes of tactile edge orientation processing have applied their stimuli to an immobilized fingertip. Here we tested the perceptual attributes of edge orientation processing when participants actively touched the stimulus. Our participants moved their finger over two pairs of edges, one pair parallel and the other nonparallel to varying degrees, and were asked to identify which of the two pairs was nonparallel. In addition to the psychophysical estimates of edge orientation acuity, we measured the speed at which participants moved their finger and the forces they exerted when moving their finger over the stimulus. We report four main findings. First, edge orientation acuity during active touch averaged 12.4°, similar to that previously reported during passive touch. Second, on average, participants moved their finger over the stimuli at ~20 mm/s and exerted contact forces of ~0.3 N. Third, there was no clear relationship between how people moved their finger or how they pressed on the stimulus and their edge orientation acuity. Fourth, consistent with previous work testing tactile spatial acuity, we found a significant correlation between fingertip size and orientation acuity such that people with smaller fingertips tended to have better orientation acuity. NEW & NOTEWORTHY Edge orientation acuity expressed by the motor system during manipulation is many times better than edge orientation acuity assessed in psychophysical studies where stimuli are applied to a passive fingertip. Here we show that this advantage is not because of movement per se because edge orientation acuity assessed in a psychophysical task, where participants actively move their finger over the stimuli, yields results similar to previous passive psychophysical studies.


Assuntos
Percepção do Tato , Tato , Adolescente , Adulto , Feminino , Dedos/fisiologia , Humanos , Masculino , Movimento , Desempenho Psicomotor
3.
Front Physiol ; 9: 857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050453

RESUMO

The biogenic amines octopamine (OA), tyramine (TA), dopamine (DA), serotonin (5-HT), and histamine (HA) affect diverse physiological and behavioral processes in invertebrates, but recent findings indicate that an additional adrenergic system exists in at least some invertebrates. Transcriptome analysis has made it possible to identify biogenic amine receptor genes in a wide variety of species whose genomes have not yet been sequenced. This approach provides new sequences for research into the evolutionary history of biogenic amine receptors and allows them to be studied in experimentally accessible animal models. The Central American Wandering spider, Cupiennius salei, is an experimental model for neurophysiological, developmental and behavioral research. We identified ten different biogenic amine receptors in C. salei transcriptomes. Phylogenetic analysis indicated that, in addition to the typical receptors for OA, TA, DA, and 5-HT in protostome invertebrates, spiders also have α1- and α2-adrenergic receptors, but lack TAR2 receptors and one invertebrate specific DA receptor type. In situ hybridization revealed four types of biogenic amine receptors expressed in C. salei mechanosensory neurons. We used intracellular electrophysiological experiments and pharmacological tools to determine how each receptor type contributes to modulation of these neurons. We show that arachnids have similar groups of biogenic amine receptors to other protostome invertebrates, but they lack two clades. We also clarify that arachnids and many other invertebrates have both α1- and α2-adrenergic, likely OA receptors. Our results indicate that in addition to an OAß-receptor that regulates rapid and large changes in sensitivity via a Gs-protein activating a cAMP mediated pathway, the C. salei mechanosensory neurons have a constitutively active TAR1 and/or α2-adrenergic receptor type that adjusts the baseline sensitivity to a level appropriate for the behavioral state of the animal by a Gq-protein that mobilizes Ca2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...