Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(27): 18396-18403, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37342812

RESUMO

ZnO photoanodes in photoelectrochemical (PEC) water splitting for green-hydrogen production are limited due to the large bandgap that is only confined to UV light. One of the strategies for broadening the photo absorption range and improving light harvesting is to modify a one-dimensional (1D) nanostructure to a three-dimensional (3D) ZnO superstructure coupling with a narrow-bandgap material, in this case, a graphene quantum dot photosensitizer. Herein, we studied the effect of sulfur and nitrogen co-doped graphene quantum dot (S,N-GQD) sensitization on the surface of ZnO nanopencil (ZnO NPc) to give a photoanode in the visible light spectrum. In addition, the photo energy harvesting between the 3D-ZnO and 1D-ZnO, as represented by neat ZnO NPc and ZnO nanorods (ZnO NRs), was also compared. Several instruments, including SEM-EDS, FTIR, and XRD revealed the successful loading of S,N-GQDs on the ZnO NPc surfaces through the layer-by-layer assembly technique. The advantages are S,N-GQDs's band gap energy (2.92 eV) decreasing ZnO NPc's band gap value from 3.169 eV to 3.155 eV after being composited with S,N-GQDs and facilitating the generation of electron-hole pairs for PEC activity under visible light irradiation. Furthermore, the electronic properties of ZnO NPc/S,N-GQDs were improved significantly over those of bare ZnO NPc and ZnO NR. The PEC measurements revealed that the ZnO NPc/S,N-GQDs stood out with a maximum current density of 1.82 mA cm-2 at +1.2 V (vs. Ag/AgCl), representing a 153% and 357% improvement over the bare ZnO NPc (1.19 mA cm-2) and the ZnO NR (0.51 mA cm-2), respectively. These results suggest that ZnO NPc/S,N-GQDs could have potential for water splitting applications.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110965

RESUMO

The depletion of fossil fuels is a worldwide problem that has led to the discovery of alternative energy sources. Solar energy is the focus of numerous studies due to its huge potential power and environmentally friendly nature. Furthermore, one such area of study is the production of hydrogen energy by engaging photocatalysts using the photoelectrochemical (PEC) method. 3-D ZnO superstructures are extensively explored, showing high solar light-harvesting efficiency, more reaction sites, great electron transportation, and low electron-hole recombination. However, further development requires the consideration of several aspects, including the morphological effects of 3D-ZnO on water-splitting performance. This study reviewed various 3D-ZnO superstructures fabricated through different synthesis methods and crystal growth modifiers, as well as their advantages and limitations. Additionally, a recent modification by carbon-based material for enhanced water-splitting efficiency has been discussed. Finally, the review provides some challenging issues and future perspectives on the improvement of vectorial charge carrier migration and separation between ZnO as well as carbon-based material, using rare earth metals, which appears to be exciting for water-splitting.

3.
J Hazard Mater ; 401: 123400, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763696

RESUMO

An integrated biorefinery approach using spent industrial ginger waste for resource recovery is reported. Valuable products including ginger oil, starch, microfibrillated cellulose (MFC), bio-oil and hydrochar were obtained. Approximately 4 % ginger oil, with a profile similar to commercial ginger oil, can be recovered via Soxhlet or Supercritical CO2 + 10 %EtOH extraction. The oil-free ginger residues were processed using two microwave techniques: starch, MFC and sugar-rich hydrolysates were firstly gained through hydrothermal microwave processing (120-200 °C in water alone), whilst chemical-rich bio-oils and energy-dense hydrochar (20-24.5 MJ kg-1) were obtained via conventional microwave pyrolysis (220-280 °C). The ginger MFC exhibited increased propensity to form microfibrillated cellulose (as evidenced by Transmission Electron Microscopy) with increasing temperature. Nanocrystalline cellulose was produced at the highest processing temperature (200 °C). These changes are commensurate with the leaching and decomposition of the amorphous regions within cellulose. The molecules and materials isolated have further downstream applications and, thus, compared to current low value resolution methods (dumping, burning or animal feed), spent industrial ginger waste is a significant resource for consideration within a biorefinery concept.


Assuntos
Resíduos Industriais , Zingiber officinale , Animais , Biocombustíveis , Temperatura Alta , Micro-Ondas , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...