Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
BMC Plant Biol ; 24(1): 660, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987664

RESUMO

Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.


Assuntos
Arsênio , Carvão Vegetal , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Arsênio/toxicidade , Bacillus/fisiologia , Poluentes do Solo/toxicidade , Clorofila/metabolismo
2.
Front Plant Sci ; 15: 1377364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011300

RESUMO

Background and aims: Nitrogen (N) distribution in plants is intricately linked to key physiological functions, including respiration, photosynthesis, structural development, and nitrogen storage. However, the specific effects of different N morphologies on N accumulation and plant growth are poorly understood. Our research specifically focused on determining how different N morphologies affect N absorption and biomass accumulation. Methods: This study elucidated the impact of different application rates (CK: 0 g N/plant; T1: 4 g N/plant; T2: 8 g N/plant) of N fertilizer on N and biomass accumulation in tobacco cultivars Hongda and K326 at different growth stages. Results: Our findings emphasize the critical role of N distribution in various plant parts, including leaves, stems, and roots, in determining the complex mechanisms of N and biomass accumulation in tobacco. We found that in relation to total N, a greater ratio of water-soluble N (N w) in leaves facilitated N accumulation in leaves. In contrast, an increased ratio of SDS (detergent)-insoluble N (N in-SDS) in leaves and non-protein N (N np) in roots hindered this increase. Additionally, our results indicate that a greater proportion of N np in leaves has a negative impact on biomass accumulation in leaves. Furthermore, elevated levels of N in-SDS, N w, and N np in roots, and N np in leaves adversely affected biomass accumulation in tobacco leaves. The Hongda cultivar exhibited greater biomass and N accumulation abilities as compared to K326. Conclusions: Our findings highlight the significant role of distribution of N morphologies on plant growth, as well as N and biomass accumulation in tobacco plants. Understanding N distribution allows farmers to optimize N application, minimizing environmental losses and maximizing yield for specific cultivars. These insights advance sustainable agriculture by promoting efficient resource use and reducing environmental impact.

3.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999050

RESUMO

Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.


Assuntos
Anti-Infecciosos , Antineoplásicos , Nanocompostos , Ácido Vanílico , Ácido Vanílico/química , Ácido Vanílico/farmacologia , Nanocompostos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Prata/química , Prata/farmacologia , Quitosana/química , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Linhagem Celular Tumoral
4.
J Fluoresc ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042356

RESUMO

The Schiff base fluorescent probe (Dz-Jul), containing julolidine aldehyde and dansyl hydrazine, was derived using a simple condensation. This chemosensor showed high selectivity towards Zn2+ and quick response (170 s) in DMSO/H2O solutions (8/2, v/v, pH 7.2 buffer). A fluorometric titration determined that Dz-Jul-Zn2+ has a binding ratio of 1:1, and the association constant (Ka) is 1.03 × 105 M-1. The Dz-Jul detection limit of Zn2+ ions was 15 nM, much lower than the WHO standard (76.0 nM). DFT, ESI mass, and FTIR spectral demonstrated a plausible complexation mode between Dz-Jul and Zn2+ ions. In actual water samples, Zn2+ has been detected with good detection performance using Dz-Jul. Additionally, Dz-Jul-coated test strips allowed for rapid and qualitative monitoring of Zn2+ ions in a visible manner.

5.
Environ Res ; 258: 119352, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876416

RESUMO

Renewable energy research is burgeoning with the anticipation of finding neat liquid fuel. Ultra sonification assisted biodiesel was derived from red algae Cyanidioschyzon merolae, with biodiesel yield of 98.9%. The results of GC MS of the prepared biodiesel showed higher concentration of methyl palmitate, methyl oleate, and stearate. This composition is appreciable, as this plays significance in desirable pour & cloud point properties. NMR spectrum revealed the ester linkages, presence of olefins, and α methyl position in olefins. Mixture of 30 wt% of biodiesel in diesel exhibited work efficiency, and also exhibited low pour point and, lower viscosity values. CeO2 and Fe2O3 nano particles were bio reduced, and were added as nano additive in biodiesel. 1:1 ratio of CeO2 and Fe2O3 added to biodiesel maximised the combustion ability of fuel owing to the oxygen storage capacity of CeO2. Further, this combination produced a satisfactory calorific value. Imbalanced ratios disrupted the catalytic and oxygen storage effects, reduced the overall energy release and calorific value of the biodiesel blend. Pour point and cetane number value of biodiesel blend ultrasonifacted with 1:1 mass ratio of Fe2O3 and CeO2 was observed to be around -7 °C and 53 °C respectively, and was better than other compositions. 1:1 mass ratio of NPS blended with 30 wt% BD in diesel showed tremendous increase in brake thermal efficiency, torque, and power. HC, NOX, and SOX emissions were reduced by 42.8%, 19.3%, and 57% respectively with 1:1 Fe2O3 and CeO2 mixed biodiesel blend. CeO2 favourably improved the oxygen storage capacity of the fuel, whereas Fe2O3 showed decrease in formation of gums and sediments in biodiesel.

6.
Pol J Microbiol ; 73(2): 207-215, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905281

RESUMO

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya. This study investigated the interactions of halogenated secondary metabolites with nsP2pro, a therapeutic target for CHIKV. A library of sixty-six halogenated plant metabolites screened previously for ADME properties was used. Metabolites without violation of Lipinski's rule were docked with nsP2pro using AutoDock Vina. To find the stability of the pipoxide chlorohydrin-nsP2pro complex, the GROMACS suite was used for MD simulation. The binding free energy of the ligand-protein complex was computed using MMPBSA. Molecular docking studies revealed that halogenated metabolites interact with nsP2pro, suggesting they are possible inhibitors. Pipoxide chlorohydrin showed the greatest affinity to the target. This was further confirmed by the MD simulations, surface accessible area, and MMPBSA studies. Pipoxide chlorohydrin, a halogenated metabolite, was the most potent against nsP2pro in the survey.


Assuntos
Antivirais , Vírus Chikungunya , Simulação de Acoplamento Molecular , Vírus Chikungunya/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Febre de Chikungunya/virologia , Febre de Chikungunya/tratamento farmacológico , Metabolismo Secundário , Simulação de Dinâmica Molecular , Halogenação , Plantas/química , Simulação por Computador , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química
7.
Food Chem Toxicol ; 191: 114840, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944144

RESUMO

Alicyclobacillus bacteria are important contaminants in the beverage industry because their spores remain in the product after usual pasteurization. At the same time, their impact on human health has yet to be characterized, as it is generally assumed to be low or non-existent. However, these bacteria are causing quality concerns mainly due to odor and taste changes of the product. Since potential health effects are not precisely known, an experimental assessment was performed, including a biosafety assessment of six viable and non-viable vegetative and spore forms of Alicyclobacillus spp. strains using cell cultures and rodent study. The monolayer of Caco-2 (Cancer coli-2) cells was investigated for its adsorption effect on the epithelium of the small intestine of mice. Lactate dehydrogenase leakage (LDH) and transepithelial electrical resistance (TEER) tests were used to ensure the integrity of the cell membrane and tight junctions. The methylthiazole tetrazolium bromide (MTT) assay examined in vitro cytotoxicity in Caco-2 and HepG2 cell lines. The hemolysis of erythrocytes was spectrophotometrically measured. The results showed negligible cytotoxicity or non-toxic response in mice. In conclusion, Alicyclobacillus spp. exhibited biocompatibility with negligible cytotoxicity and minimal safety concerns.

8.
Water Environ Res ; 96(5): e11033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720414

RESUMO

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Assuntos
Praias , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Índia , Microplásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Plásticos/química , Plásticos/análise
9.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701232

RESUMO

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Assuntos
Carbono , Clima , Microplásticos , Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Carbono/análise , Poluentes do Solo/análise
11.
Sci Rep ; 14(1): 11775, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783048

RESUMO

This study assesses the relationships between vegetation dynamics and climatic variations in Pakistan from 2000 to 2023. Employing high-resolution Landsat data for Normalized Difference Vegetation Index (NDVI) assessments, integrated with climate variables from CHIRPS and ERA5 datasets, our approach leverages Google Earth Engine (GEE) for efficient processing. It combines statistical methodologies, including linear regression, Mann-Kendall trend tests, Sen's slope estimator, partial correlation, and cross wavelet transform analyses. The findings highlight significant spatial and temporal variations in NDVI, with an annual increase averaging 0.00197 per year (p < 0.0001). This positive trend is coupled with an increase in precipitation by 0.4801 mm/year (p = 0.0016). In contrast, our analysis recorded a slight decrease in temperature (- 0.01011 °C/year, p < 0.05) and a reduction in solar radiation (- 0.27526 W/m2/year, p < 0.05). Notably, cross-wavelet transform analysis underscored significant coherence between NDVI and climatic factors, revealing periods of synchronized fluctuations and distinct lagged relationships. This analysis particularly highlighted precipitation as a primary driver of vegetation growth, illustrating its crucial impact across various Pakistani regions. Moreover, the analysis revealed distinct seasonal patterns, indicating that vegetation health is most responsive during the monsoon season, correlating strongly with peaks in seasonal precipitation. Our investigation has revealed Pakistan's complex association between vegetation health and climatic factors, which varies across different regions. Through cross-wavelet analysis, we have identified distinct coherence and phase relationships that highlight the critical influence of climatic drivers on vegetation patterns. These insights are crucial for developing regional climate adaptation strategies and informing sustainable agricultural and environmental management practices in the face of ongoing climatic changes.


Assuntos
Clima , Estações do Ano , Paquistão , Desenvolvimento Vegetal , Plantas , Mudança Climática , Temperatura , Monitoramento Ambiental/métodos
12.
Heliyon ; 10(9): e30674, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765105

RESUMO

Concrete is the prime source, which fulfils the applications for construction in various forms. The prime roles of concrete industries are reducing material usage, enrichment of compressive strength, and flexural strength of concrete usage. This research focuses on recycling kaolin (mining waste) and silica fume, a great potential material for replacing coarse aggregate gravel stone and fine aggregate sand in conventional concrete as a hybrid. The developed concrete contained 5% nano alumina (Al2O3), 10% of kaolin waste (KW), and 5, 10, and 15% of silica fume (SF), and its behavior like compressive strength, flexural strength, water absorption, and acid attack behavior is studied. The molecular structure of crystalline is analyzed via X-ray diffraction (XRD). The 15% SF blended with 5% alumina and 10% KW cured within 28 and 90 days recorded high compressive and flexural strength (44 ± 1.76 MPa and 4.3 ± 0.17 MPa). XRD pattern proved their alumina, SF, and KW and found that the concrete blended with 5% alumina, 10% KW, and 15 wt% SF(90 days cured concrete) showed low water absorption (3.1 ± 0.12%). The effect of sulfuric acid behavior on weight reduction was 0.78% compared to CC1 (concrete cube without Al2O3, SF, and KW).

13.
Data Brief ; 54: 110378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660234

RESUMO

The study was conducted to investigate the effect of green net shade during staggered planting times on growth, biochemical, antioxidant enzymes and vase life of gladiolus cut flowers. The green net shade effectively reduces the internal temperature, particularly during extremely hot planting times. Under the green net shade conditions, high quality morphological and biochemical observations were observed during the months of March and April planting times. These included longer plant height, spike length, a higher number of leaves plant-1, larger leaf area, maximum spike diameter, greater number of florets spike-1, heavier flower diameter, higher fresh and dry weight, elevated photosynthetic rate, and reduced time taken for flowering. Additionally, chlorophyll contents and transpiration rate showed significant increases, while antioxidant enzyme activity (POD and CAT) was recorded at higher levels. This resulted in reduced electrolyte leakage and an extended vase life of the gladiolus cut flowers. Moreover, the application of green net shade conditions during the planting in May and June significantly enhanced the quality characteristics of gladiolus cut flowers. Effectiveness of green net shade is evident in reducing temperature of growing environment, leading to improved growth, alleviate oxidative stress, enhanced quality features and vase life of the gladiolus flowers.

14.
Heliyon ; 10(8): e29818, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681603

RESUMO

Environmental consciousness motivates scientists to devise an alternative method for producing natural fiber composite materials in order to decrease the demand for synthetic fibers. This study explores the potential of a novel composite material derived from madar fiber-reinforced epoxy with porcelain filler particulates, designed specifically for biomedical instrumentation applications. The primary focus is to assess the material's structural, mechanical, and antibacterial properties. X-ray Diffraction analysis was employed to discern the crystalline nature of the composite, revealing enhanced crystallinity due to the inclusion of porcelain particulates. Fourier-Transform Infrared Spectroscopy confirmed the chemical interactions and bonding mechanisms between madar fiber, epoxy matrix, and porcelain filler. Mechanically, the composite exhibited superior properties when addition of porcelain fillers, maximum results obtain in tensile strength of 51.28 MPa, flexural strength of 54.21 MPa, and impact strength of 0.0155 kJ/m2, making it ideal for robust biomedical applications. Scanning Electron Microscopy provided detailed insights into the morphology and distribution of the reinforcing agents within the epoxy matrix, emphasizing the fibrillated structure of madar fiber and the uniform dispersion of porcelain particulates. Importantly, antibacterial assays demonstrated the composite's potential resistance against common pathogenic bacteria, which is crucial for biomedical instrumentation. Collectively, this research underscores the promising attributes of the madar fiber reinforced epoxy composite with porcelain particulates, suggesting its suitability for advanced biomedical applications.

15.
PLoS One ; 19(4): e0301707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662709

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of childbearing age, associated with increased incidence of emotional disorders, anxiety and depression. OBJECTIVE: The aim was of this study was to investigate whether those women reporting PCOS differed to women without PCOS in measures of psychological well-being including body-image satisfaction and self-esteem across a Middle Eastern population. MATERIALS AND METHODS: An online survey link of 21 questions was shared and distributed across social media platforms (Instagram and WhatsApp). The main outcome measured was levels of self-esteem and body image satisfaction in association with symptoms experienced by the participants. RESULTS: 12,199 female subjects completed the survey of whom 3,329 respondents (27.3%) self-reported a diagnosis of PCOS. PCOS respondents felt less attractive compared to non-PCOS respondents (73.9% vs 80.5%, p<0.0001). More respondents with PCOS reported avoidance of their reflection in the mirror (61.7% vs 49.8%, p<0.001) and avoidance of social interactions (22.3% vs 32.3%, p<0.0001). More PCOS respondents wanted to lose weight (75.2% vs 68.5%, p<0.001) with increasing weight being associated with being less attractive (p<0.001). Fewer PCOS respondents felt satisfied/confident compared non-PCOS respondents (38.6% vs 50.7%, p<0.001). CONCLUSION: PCOS respondents reported significantly lower measures of self-esteem and body image satisfaction compared to non-PCOS respondents in this population.


Assuntos
Imagem Corporal , Síndrome do Ovário Policístico , Autoimagem , Mídias Sociais , Humanos , Feminino , Síndrome do Ovário Policístico/psicologia , Síndrome do Ovário Policístico/epidemiologia , Adulto , Imagem Corporal/psicologia , Estudos Transversais , Adulto Jovem , Satisfação Pessoal , Oriente Médio/epidemiologia , Adolescente , Inquéritos e Questionários
16.
Environ Monit Assess ; 196(5): 446, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607495

RESUMO

The present study reveals toxic metals, proximate composition, and growth conditions in seven fish species, aiding their nutritional importance and conditions. The samples of seven different small indigenous fish species, including Xenentodon cancila, Glossogobious giuris, Pseudambassis ranga, Puntius dorsolis, Mystus vittatus, Dawkinsia filamentosa, and Dawkinsia tambraparaniei, were collected in river Gadananathi, Tamilnadu, India. A total 14 fish samples were analyzed for lead, cadmium, and copper using atomic absorption spectrometry. The standard procedures were used to determine the length-weight and proximate composition of the seven fishes. The findings revealed that the seven fish species had variable amounts of metal buildup. Cu levels were highest in D. tambraparniei gills and lowest in M. vittatus gills and livers; nonetheless, substantial amounts of Cu were found in P. dorsalis livers. In the length-weight correlations of the regression parameters of coefficient value r2, the "a" and "b" values revealed a positive allometric growth rate in all fish species except G. giuris and M. vittatus. However, X. cancila had the highest composition in the proximate analysis, while D. tambraparniei and D. filamentosa had the highest protein content mean value at a significant level (P ≤ 0.05). Overall, discrepancies in nutritional content might be related to species, environmental circumstances, fish age and size, and food availability.


Assuntos
Peixes-Gato , Cobre , Animais , Índia , Rios , Monitoramento Ambiental , Intoxicação por Metais Pesados
17.
Toxicon ; 243: 107737, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38677379

RESUMO

Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.


Assuntos
Acacia , Inseticidas , Simulação de Acoplamento Molecular , Óleos Voláteis , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Acacia/química , Inseticidas/química , Inseticidas/toxicidade , Culex/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Mariposas/efeitos dos fármacos , Sementes/química
18.
Funct Plant Biol ; 51: FP24034, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38640358

RESUMO

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPas e) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6µmol CO2 µmol-1 H2 O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7µmolm-2 s-1 ) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.


Assuntos
Arabidopsis , Arabidopsis/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Frutose/metabolismo , Fotossíntese/genética , Clorofila/genética , Clorofila/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
Front Microbiol ; 15: 1376579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686113

RESUMO

Background: Plasmodiophora brassicae is an ever-increasing threat to cruciferous crop production worldwide. Aims and methods: This study investigated the impact of pre-soil fumigation with ammonium bicarbonate (N) and lime (NB) to manage clubroot disease in Chinese cabbage through 16S rRNA gene amplification sequencing. Results: We found that soil fumigation with N and NB suppressed disease incidence by reducing the soil acidity and population of P. brassicae in the rhizosphere. Minimum disease incidence and maximum relative control effect of about 74.68 and 66.28% were achieved in greenhouse and field experiments, respectively, under the combined application of ammonium bicarbonate and lime (LNB) as compared with N, NB, and control (GZ). Microbial diversity analysis through Miseq sequencing proved that pre-soil fumigation with N, NB, and LNB clearly manipulated rhizosphere microbial community composition and changed the diversity and structure of rhizosphere microbes compared with GZ. Bacterial phyla such as Proteobacteria, Bacteriodetes, and Acidobacteria and fungal phyla including Olpidiomycota and Ascomycota were most dominant in the rhizosphere of Chinese cabbage plants. Soil fumigation with N and NB significantly reduced the abundance of clubroot pathogen at genus (Plasmodiophora) level compared with GZ, while decreased further under combined application LNB. Microbial co-occurrence network analysis showed a highly connected and complex network and less competition for resources among microbes under combined application LNB. Conclusion: We conclude that for environmentally friendly and sustainable agriculture, soil fumigation with combined ammonium bicarbonate and lime plays a crucial role in mitigating Chinese cabbage clubroot disease by alleviating soil pH, reducing pathogen population, and manipulating the rhizosphere microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...