Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1305394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419846

RESUMO

Millets are recognized for their health and nutritional values, and the United Nations declared 2023 the International Year of Millets. Among the several health and nutritional benefits of millets, their impact on hemoglobin concentration is important since anemia is a major public health issue in many countries. To investigate the effect of millet (including sorghum) consumption on hemoglobin concentration in the blood, a systematic review and meta-analysis were conducted. Thirteen published studies featuring randomized control trials involving 590 individuals in the intervention group and 549 control individuals were eligible for the meta-analysis. The difference-in-differences analysis revealed highly significant (p < 0.01) positive effects of millet consumption on hemoglobin concentration, with an effect size of +0.68 standardized mean difference units. The change in hemoglobin concentration observed in the intervention group was +13.6%, which is statistically significant (p < 0.0005), compared to that in the control group, which was +4.8% and not statistically significant (p = 0.1362). In four studies, the consumption of millets in the intervention group demonstrated a change from mild anemia to normal status among children, whereas there was no change in the control group. The findings provide evidence that the consumption of millets can improve blood hemoglobin concentration, likely resulting from increased iron intake. Further research is needed involving the assessment of iron content and bioavailability to better understand the effect variation among millet types and the mechanisms involved.

2.
Front Nutr ; 8: 725529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722606

RESUMO

The prevalence of iron deficiency anemia is highest among low and middle-income countries. Millets, including sorghum, are a traditional staple in many of these countries and are known to be rich in iron. However, a wide variation in the iron composition of millets has been reported, which needs to be understood in consonance with its bioavailability and roles in reducing anemia. This systematic review and meta-analysis were carried out to analyze the scientific evidence on the bioavailability of iron in different types of millets, processing, and the impact of millet-based food on iron status and anemia. The results indicated that iron levels in the millets used to study iron bioavailability (both in vivo and in vitro) and efficacy varied with the type and variety from 2 mg/100 g to 8 mg/100 g. However, not all the efficacy studies indicated the iron levels in the millets. There were 30 research studies, including 22 human interventions and 8 in vitro studies, included in the meta-analysis which all discussed various outcomes such as hemoglobin level, serum ferritin level, and absorbed iron. The studies included finger millet, pearl millet, teff and sorghum, or a mixture of millets. The results of 19 studies conducted on anaemic individuals showed that there was a significant (p < 0.01) increase in hemoglobin levels by 13.2% following regular consumption (21 days to 4.5 years) of millets either as a meal or drink compared with regular diets where there was only 2.7% increase. Seven studies on adolescents showed increases in hemoglobin levels from 10.8 ± 1.4 (moderate anemia) to 12.2 ± 1.5 g/dl (normal). Two studies conducted on humans demonstrated that consumption of a pearl millet-based meal significantly increased the bioavailable iron (p < 0.01), with the percentage of bioavailability being 7.5 ± 1.6, and provided bioavailable iron of 1 ± 0.4 mg. Four studies conducted on humans showed significant increases in ferritin level (p < 0.05) up to 54.7%. Eight in-vitro studies showed that traditional processing methods such as fermentation and germination can improve bioavailable iron significantly (p < 0.01) by 3.4 and 2.2 times and contributed to 143 and 95% of the physiological requirement of women, respectively. Overall, this study showed that millets can reduce iron deficiency anemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...