Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 110(3): 1418-1426, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33321138

RESUMO

Insulin infusion sets worn for more than 4-5 days have been associated with a greater risk of unexplained hyperglycemia, a phenomenon that has been hypothesized to be caused by an inflammatory response to preservatives such as m-cresol and phenol. In this cross-over study in diabetic swine, we examined the role of the preservative m-cresol in inflammation and changes in infusion site patency. Insulin pharmacokinetics (PK) and glucose pharmacodynamics (PD) were measured on delivery of a bolus of regular human insulin U-100 (U-100R), formulated with or without 2.5 mg/mL m-cresol, to fasted swine following 0, 3, 5, 7, and 10 days of continuous subcutaneous insulin infusion (CSII). In a subsequent study with the same animals, biopsies were evaluated from swine wearing infusion sets infusing nothing, saline, or U-100R either with or without 2.5 mg/mL m-cresol, following 3, 7, and 10 days of CSII. Exposure to m-cresol did not impact any PK or PD endpoints. PK and PD responses dropped markedly from Days 7-10, regardless of the presence of m-cresol. Histopathology results suggest an additive inflammatory response to both the infusion set and the insulin protein itself, peaking at Day 7 and remaining stable beyond.


Assuntos
Diabetes Mellitus , Insulina , Animais , Glicemia , Cresóis , Estudos Cross-Over , Hipoglicemiantes , Sistemas de Infusão de Insulina , Suínos
2.
J Pharm Sci ; 106(12): 3507-3514, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28860086

RESUMO

Characterizing molecular charge variants or isoforms is essential for understanding safety, potency, and bioavailability of antibody therapeutics. However, there is little information on how they influence stability and viscosity-properties governing immunogenicity and delivery. To bridge this gap, we studied antibody stability as a function of charge variant content generated via bioreactor process. We were able to systematically vary acidic variant levels as a function of bioreactor harvest time. Importantly, we do not observe any impact on aggregation behavior of a formulated antibody at high protein concentration as a function of acidic variant level. Furthermore, we confirm that acidic variants enriched using fractionation do not influence viscosity, colloidal or conformational stability. Interestingly, variants with the most acidic isoelectric points contribute disproportionately to formulation color. We discuss our findings in context of antibody manufacturing processes that may yield increased charge variant content.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Ácidos/química , Química Farmacêutica/métodos , Humanos , Ponto Isoelétrico , Viscosidade
3.
Protein Eng Des Sel ; 28(10): 403-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26363633

RESUMO

Self-association of monoclonal antibodies (mAbs) at high concentrations can result in developability challenges such as poor solubility, aggregation, opalescence and high viscosity. There is a significant unmet need for methods that can evaluate self-association propensities of concentrated mAbs at the earliest stages in antibody discovery to avoid downstream issues. We have previously developed a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) that is capable of detecting weak antibody self-interactions using unusually dilute mAb solutions (tens of µg/ml). Here we optimize and implement this assay for characterization of unpurified and highly dilute mAbs directly in cell culture media. This assay was applied to screen 87 mAbs obtained via immunization. Our measurements reveal a wide range of self-associative propensities for mAbs that bind to the same antigen and which differ mainly in their complementarity-determining regions. The least associative mAbs identified by AC-SINS were confirmed to be highly soluble when purified and concentrated by three to five orders of magnitude. This approach represents a key advance in screening mAb variants using unpurified antibody samples, and it holds significant potential to both improve initial candidate selection as well as to guide protein engineering efforts to improve the properties of specific mAb candidates.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Fracionamento Químico/métodos , Nanopartículas/química , Análise Espectral , Anticorpos Monoclonais/imunologia , Células HEK293 , Humanos , Imunização , Solubilidade
4.
Mol Pharm ; 10(4): 1322-31, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23383873

RESUMO

A key challenge in developing therapeutic antibodies is their highly variable propensities to self-associate at high antibody concentrations (>50 mg/mL) required for subcutaneous delivery. Identification of monoclonal antibodies (mAbs) in the initial discovery process that not only have high binding affinity but also have high solubility and low viscosity would simplify the development of safe and effective antibody therapeutics. Unfortunately, the low purities, small quantities and large numbers of antibody candidates during the early discovery process are incompatible with current methods of measuring antibody self-association. We report a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) capable of identifying mAbs with low self-association propensity that is robust even at low mAb concentrations (5-50 µg/mL) and in the presence of cell culture media. Gold nanoparticles are coated with polyclonal antibodies specific for human antibodies, and then human mAbs are captured from dilute antibody solutions. We find that the wavelength of maximum absorbance (plasmon wavelength) of antibody-gold conjugates--which red-shifts as the distance between particles is reduced due to attractive mAb self-interactions--is well correlated with light scattering measurements conducted at several orders of magnitude higher antibody concentrations. The generality of AC-SINS makes it well suited for use in diverse settings ranging from antibody discovery to formulation development.


Assuntos
Anticorpos Monoclonais/química , Imuno-Histoquímica , Adsorção , Química Farmacêutica/métodos , Meios de Cultura/química , Difusão , Desenho de Fármacos , Humanos , Cinética , Luz , Nanopartículas/química , Nanotecnologia/métodos , Espalhamento de Radiação , Solubilidade , Viscosidade
5.
Mol Pharm ; 9(4): 744-51, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22221144

RESUMO

Monoclonal antibodies display highly variable solution properties such as solubility and viscosity at elevated concentrations (>50 mg/mL), which complicates antibody formulation and delivery. To understand this complex behavior, it is critical to measure the underlying protein self-interactions that govern the solution properties of antibody suspensions. We have evaluated the pH-dependent self-association behavior of three monoclonal antibodies using self-interaction chromatography for a range of pH values commonly used in antibody formulations (pH 4.4-6). At low ionic strength (<25 mM), we find that each antibody is more associative at near-neutral pH (pH 6) than at low pH (pH 4.4). At high ionic strength (>100 mM), we observe the opposite pH-dependent pattern of antibody self-association. Importantly, this inversion in self-association behavior is not unique to multidomain antibodies, as similar pH-dependent behavior is observed for some small globular proteins (e.g., ribonuclease A and α-chymotrypsinogen). We also find that the opalescence of concentrated antibody solutions (90 mg/mL) is minimized at low ionic strength at pH 4.4 and high ionic strength at pH 6, in agreement with the self-interaction measurements conducted at low antibody concentrations (5 mg/mL). Our results highlight the complexity of antibody self-association and emphasize the need for systematic approaches to optimize the solution properties of concentrated antibody formulations.


Assuntos
Anticorpos Monoclonais/química , Concentração Osmolar , Concentração de Íons de Hidrogênio , Viscosidade
6.
Biophys J ; 101(7): 1749-57, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21961601

RESUMO

Monoclonal antibodies are typically monomeric and nonviscous at low concentrations, yet they display highly variable associative and viscous behavior at elevated concentrations. Although measurements of antibody self-association are critical for understanding this complex behavior, traditional biophysical methods are not capable of characterizing such concentration-dependent self-association in a high-throughput manner. Here we describe a nanoparticle-based method, termed self-interaction nanoparticle spectroscopy, that is capable of rapidly measuring concentration-dependent self-interactions for three human monoclonal antibodies with unique solution behaviors. We demonstrate that gold nanoparticles conjugated with antibodies at low protein concentrations (<40 µg/mL) display self-association behavior (as measured by the interparticle distance-dependent plasmon wavelength) that is well correlated with static light-scattering measurements obtained at three orders of magnitude higher antibody concentrations. Using this methodology, we find that the antibodies display a complex pH-dependent self-association behavior that is strongly influenced by the solution ionic strength. Importantly, we find that a polyclonal human antibody is nonassociative for all solution conditions evaluated in this work, suggesting that antibody self-association is more specific than previously realized. We expect that our findings will guide rational manipulation of antibody phase behavior, and enable studies that elucidate sequence and structural determinants of antibody self-association.


Assuntos
Anticorpos Monoclonais/química , Multimerização Proteica , Análise Espectral/métodos , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Luz , Nanopartículas Metálicas/química , Concentração Osmolar , Estrutura Quaternária de Proteína , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...