Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 21(11): e14197, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31755869

RESUMO

BACKGROUND: The field of eHealth has a history of more than 20 years. During that time, many different eHealth services were developed. However, factors influencing the adoption of such services were seldom the main focus of analyses. For this reason, organizations adopting and implementing eHealth services seem not to be fully aware of the barriers and facilitators influencing the integration of eHealth services into routine care. OBJECTIVE: The objective of this work is to provide (1) a comprehensive list of relevant barriers to be considered and (2) a list of facilitators or success factors to help in planning and implementing successful eHealth services. METHODS: For this study, a twofold approach was applied. First, we gathered experts' current opinions on facilitators and barriers in implementing eHealth services via expert discussions at two health informatics conferences held in Europe. Second, we conducted a systematic literature analysis concerning the barriers and facilitators for the implementation of eHealth services. Finally, we merged the results of the expert discussions with those of the systematic literature analysis. RESULTS: Both expert discussions (23 and 10 experts, respectively) identified 15 barriers and 31 facilitators, whereas 76 barriers and 268 facilitators were found in 38 of the initial 56 articles published from 12 different countries. For the analyzed publications, the count of distinct barriers reported ranged from 0 to 40 (mean 10.24, SD 8.87, median 8). Likewise, between 0 and 48 facilitators were mentioned in the literature (mean 9.18, SD 9.33, median 6). The combination of both sources resulted in 77 barriers and 292 facilitators for the adoption and implementation of eHealth services. CONCLUSIONS: This work contributes a comprehensive list of barriers and facilitators for the implementation and adoption of eHealth services. Addressing barriers early, and leveraging facilitators during the implementation, can help create eHealth services that better meet the needs of users and provide higher benefits for patients and caregivers.


Assuntos
Coleta de Dados/métodos , Telemedicina/métodos , Humanos
2.
JMIR Mhealth Uhealth ; 6(12): e201, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552085

RESUMO

BACKGROUND: Despite the availability of a great variety of consumer-oriented wearable devices, perceived usefulness, user satisfaction, and privacy concerns have not been fully investigated in the field of wearable applications. It is not clear why healthy, active citizens equip themselves with wearable technology for running activities, and what privacy and data sharing features might influence their individual decisions. OBJECTIVE: The primary aim of the study was to shed light on motivational and privacy aspects of wearable technology used by healthy, active citizens. A secondary aim was to reevaluate smart technology adoption within the running community in Germany in 2017 and to compare it with the results of other studies and our own study from 2016. METHODS: A questionnaire was designed to assess what wearable technology is used by runners of different ages and sex. Data on motivational factors were also collected. The survey was conducted at a regional road race event in May 2017, paperless via a self-implemented app. The demographic parameters of the sample cohort were compared with the event's official starter list. In addition, the validation included comparison with demographic parameters of the largest German running events in Berlin, Hamburg, and Frankfurt/Main. Binary logistic regression analysis was used to investigate whether age, sex, or course distance were associated with device use. The same method was applied to analyze whether a runner's age was predictive of privacy concerns, openness to voluntary data sharing, and level of trust in one's own body for runners not using wearables (ie, technological assistance considered unnecessary in this group). RESULTS: A total of 845 questionnaires were collected. Use of technology for activity monitoring during events or training was prevalent (73.0%, 617/845) in this group. Male long-distance runners and runners in younger age groups (30-39 years: odds ratio [OR] 2.357, 95% CI 1.378-4.115; 40-49 years: OR 1.485, 95% CI 0.920-2.403) were more likely to use tracking devices, with ages 16 to 29 years as the reference group (OR 1). Where wearable technology was used, 42.0% (259/617) stated that they were not concerned if data might be shared by a device vendor without their consent. By contrast, 35.0% (216/617) of the participants would not accept this. In the case of voluntary sharing, runners preferred to exchange tracked data with friends (51.7%, 319/617), family members (43.4%, 268/617), or a physician (32.3%, 199/617). A large proportion (68.0%, 155/228) of runners not using technology stated that they preferred to trust what their own body was telling them rather than trust a device or an app (50-59 years: P<.001; 60-69 years: P=.008). CONCLUSIONS: A total of 136 distinct devices by 23 vendors or manufacturers and 17 running apps were identified. Out of 4, 3 runners (76.8%, 474/617) always trusted in the data tracked by their personal device. Data privacy concerns do, however, exist in the German running community, especially for older age groups (30-39 years: OR 1.041, 95% CI 0.371-0.905; 40-49 years: OR 1.421, 95% CI 0.813-2.506; 50-59 years: OR 2.076, 95% CI 1.813-3.686; 60-69 years: OR 2.394, 95% CI 0.957-6.183).

3.
Appl Clin Inform ; 8(2): 651-659, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636063

RESUMO

BACKGROUND: In the summer of 2016 an international group of biomedical and health informatics faculty and graduate students gathered for the 16th meeting of the International Partnership in Health Informatics Education (IPHIE) masterclass at the University of Utah campus in Salt Lake City, Utah. This international biomedical and health informatics workshop was created to share knowledge and explore issues in biomedical health informatics (BHI). OBJECTIVE: The goal of this paper is to summarize the discussions of biomedical and health informatics graduate students who were asked to define interoperability, and make critical observations to gather insight on how to improve biomedical education. METHODS: Students were assigned to one of four groups and asked to define interoperability and explore potential solutions to current problems of interoperability in health care. RESULTS: We summarize here the student reports on the importance and possible solutions to the "interoperability problem" in biomedical informatics. Reports are provided from each of the four groups of highly qualified graduate students from leading BHI programs in the US, Europe and Asia. CONCLUSION: International workshops such as IPHIE provide a unique opportunity for graduate student learning and knowledge sharing. BHI faculty are encouraged to incorporate into their curriculum opportunities to exercise and strengthen student critical thinking to prepare our students for solving health informatics problems in the future.


Assuntos
Internacionalidade , Informática Médica/educação , Estudantes de Medicina/psicologia , Humanos
4.
JMIR Mhealth Uhealth ; 5(2): e24, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28246070

RESUMO

BACKGROUND: Today, runners use wearable technology such as global positioning system (GPS)-enabled sport watches to track and optimize their training activities, for example, when participating in a road race event. For this purpose, an increasing amount of low-priced, consumer-oriented wearable devices are available. However, the variety of such devices is overwhelming. It is unclear which devices are used by active, healthy citizens and whether they can provide accurate tracking results in a diverse study population. No published literature has yet assessed the dissemination of wearable technology in such a cohort and related influencing factors. OBJECTIVE: The aim of this study was 2-fold: (1) to determine the adoption of wearable technology by runners, especially "smart" devices and (2) to investigate on the accuracy of tracked distances as recorded by such devices. METHODS: A pre-race survey was applied to assess which wearable technology was predominantly used by runners of different age, sex, and fitness level. A post-race survey was conducted to determine the accuracy of the devices that tracked the running course. Logistic regression analysis was used to investigate whether age, sex, fitness level, or track distance were influencing factors. Recorded distances of different device categories were tested with a 2-sample t test against each other. RESULTS: A total of 898 pre-race and 262 post-race surveys were completed. Most of the participants (approximately 75%) used wearable technology for training optimization and distance recording. Females (P=.02) and runners in higher age groups (50-59 years: P=.03; 60-69 years: P<.001; 70-79 year: P=.004) were less likely to use wearables. The mean of the track distances recorded by mobile phones with combined app (mean absolute error, MAE=0.35 km) and GPS-enabled sport watches (MAE=0.12 km) was significantly different (P=.002) for the half-marathon event. CONCLUSIONS: A great variety of vendors (n=36) and devices (n=156) were identified. Under real-world conditions, GPS-enabled devices, especially sport watches and mobile phones, were found to be accurate in terms of recorded course distances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...