Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(2): 024116, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641391

RESUMO

It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet-triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over "safe" excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet-triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature-the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states.

2.
J Phys Chem Lett ; 13(35): 8312-8318, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040023

RESUMO

The pyronin class of fluorophores serves a critical role in numerous imaging applications, particularly involving preferential staining of RNA through base pair intercalation. Despite this important role in molecular staining applications, the same set of century-old pyronins (i.e., pyronin Y (PY) and pyronin B (PB)), which possess relatively low fluorophore brightness, are still predominantly being used due to the lack of methodology for generating enhanced variants. Here, we use TD-DFT calculations of interconversion energies between structures on the S1 surface as a preliminary means to evaluate fluorophore brightness for a proposed set of pyronins containing variable substitution patterns at the 2, 3, 6, and 7 positions. Using a nucleophilic aromatic substitution/hydride addition approach, we synthesized the same set of pyronins and demonstrate that quantum-mechanical computations are useful for predicting fluorophore performance. We produced the brightest series of pyronin fluorophores described to date, which possess considerable gains over PY and PB.


Assuntos
Pironina , RNA , Corantes Fluorescentes , Estrutura Molecular , Pironina/química , Coloração e Rotulagem
3.
Inorg Chem ; 60(12): 8489-8499, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34097398

RESUMO

Here, we analyze changes in the optical spectra of activated copper-exchanged zeolites during methane activation with the Tamm-Dancoff time-dependent density functional theory, TDA-DFT, while using the ωB2PLYP functional. Two active sites, [Cu2O]2+ and [Cu3O3]2+, were studied. For [Cu2O]+, the 22 700 cm-1 peak is associated with µ-oxo 2p → Cu 3d/4s charge transfer. Of the [Cu2O]2+ methane C-H activation intermediates that we examined, only [Cu-O(H)(H)-Cu] and [Cu-O(H)(CH3)-Cu] have spectra that match experimental observations. After methane activation, the µ-oxo 2p orbitals lose two electrons and become hybridized with methanol C 2p orbitals and/or H 1s orbitals. The frontier unoccupied orbitals become more Cu 4s/4p Rydberg-like, reducing overlap with occupied orbitals. These effects cause the disappearance of the 22 700 cm-1 peak. For [Cu3O3]2+, the exact structures of the species formed after methane activation are unknown. Thus, we considered eight possible structures. Several of these provide a significant decrease in intensity near 23 000-38 000 cm-1, as seen experimentally. Notably, these species involve either rebound of the separated methyl to a µ-oxo atom or its remote stabilization at a Brønsted acid site in exchange for the acidic proton. These spectral changes are caused by the same mechanism seen in [Cu2O]2+ and are likely responsible for the observed reduced intensities near 23 000-38 000 cm-1. Thus, TDA-DFT calculations with ωB2PLYP provide a molecular-level understanding of the evolution of copper-oxo active sites during methane-to-methanol conversion.

4.
Inorg Chem ; 60(9): 6218-6227, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33876934

RESUMO

There is an ongoing debate regarding the role of [Cu3O3]2+ in methane-to-methanol conversion by copper-exchanged zeolites. Here, we perform electronic structure analysis and localized orbital bonding analysis to probe the redox chemistry of its Cu and µ-oxo sites. Also, the X-ray absorption near-edge structure, XANES, of methane activation in [Cu3O3]2+ is compared to that of the more ubiquitous [Cu2O]2+. Methane C-H activation is associated with only the Cu2+/Cu+ redox couple in [Cu2O]2+. For [Cu3O3]2+, there is no basis for the Cu3+/Cu2+ couple's participation at the density functional theory ground state. In [Cu3O3]2+, there are many possible intrazeolite intermediates for methane activation. In the nine possibilities that we examined, methane activation is driven by a combination of the Cu2+/Cu+ and oxyl/O2- redox couples. Based on this, the Cu 1s-edge XANES spectra of [Cu2O]2+ and [Cu3O3]2+ should both have energy signatures of Cu2+ → Cu+ reduction during methane activation. This is indeed what we obtained from the calculated XANES spectra. [Cu2O]2+ and [Cu3O3]2+ intermediates with one Cu+ site are shifted by 0.9-1.7 eV, while those with two Cu+ sites are shifted by 3.0-4.2 eV. These are near a range of 2.5-3.2 eV observed experimentally after contacting methane with activated copper-exchanged zeolites. Thus, activation of methane by [Cu3O3]2+ will lead to formation of Cu+ sites. Importantly, for future quantitative XANES studies, involvement of O- + e- → O2- in [Cu3O3]2+ implies a disconnect between the overall reactivity and the number of electrons used in the Cu2+/Cu+ redox couple.

5.
Inorg Chem ; 59(5): 3102-3109, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049500

RESUMO

Organometallic uranium complexes that can activate small molecules are well-known. In contrast, there are no known organometallic trans-uranium species capable of small-molecule transformations. Using density functional theory, we previously showed that changing actinide-ligand bonds from U-O groups to Np-N- (amide/imido) bonds makes redox small-molecule activation more energetically favorable for Np species. Here, we determine how general this ligand-modulation strategy is for affecting small-molecule activation in Np species. We focus on two reactions, one involving redox transformation of the actinide(s) and the other involving no change in the oxidation state of the actinide(s). Specifically, we considered the hydrogen evolution reaction (HER) from H2O by actinide tris-aryloxide species. We also considered H2 capture and hydride transfer by actinide siloxide and silylamide complexes. For the HER, the barriers for Np(III) systems are much higher than those of U(III). The overall reaction energies are also much worse. An-O → An-N substitutions marginally improve the barriers by 1-4 kcal/mol and more substantially improve the reaction energies by 9-15 kcal/mol. For H2 capture and hydride transfer, the reaction energies for the U and Np species are similar. For both actinides, like-for-like An-O → An-N substitutions lead to improved reaction energies. Interestingly, in a recent report, it seemingly appears that U-O (siloxide) → U-N (silylamide) leads to complete shutdown of reactivity for H2 capture and hydride transfer. This observation is reproduced and explained with calculations. The ligand environments of the siloxide and silylamide that were compared are vastly different. The steric environment of the siloxide is conducive for reactivity while the particular silylamide is not. We conclude that small-molecule activation with organometallic neptunium species is achievable with a guided choice of ligands. Additional emphasis should be placed on ligands that can allow for improved transition state barriers.

6.
J Chem Phys ; 151(13): 134102, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594337

RESUMO

We have examined the performance of Multiconfiguration Pair-Density Functional Theory (MC-PDFT) for computing the ground-state properties of actinide species. Specifically, we focused on the properties of UN2 and various actinyl species. The properties obtained with MC-PDFT at the scalar-relativistic level are compared to Kohn-Sham DFT (KS-DFT); complete active space self-consistent field theory, CASSCF; coupled-cluster theory, CCSD(T) and CCSDT; as well as multireference perturbation theory (CASPT2). We examine the degree to which MC-PDFT improves over KS-DFT and CASSCF while aligning with CASPT2, CCSD(T), and CCSDT. All properties that we considered were for the CASPT2 electronic ground states. For structural parameters, MC-PDFT confers very little advantage over KS-DFT, especially the B3LYP density functional. For NpO2 3+, MC-PDFT and local KS-DFT functionals excessively favor the bent structure, whereas CCSDT and CASPT2 predict the bent and linear structures as isoenergetic. For this special case, hybrid KS-DFT functionals like PBE0 and B3LYP provide results closer to CASPT2 and CCSDT than MC-PDFT. On a more positive note, MC-PDFT is very close to CASPT2 and CCSD(T) for the redox potentials, energetics of redox chemical reactions, as well as ligand-binding energies. These are encouraging results since MC-PDFT is more affordable. The best MC-PDFT functional is ft-PBE. Our findings suggest that MC-PDFT can be used to study systems and excited states with larger strong electron correlation effects than were considered here. However, for the systems and properties considered here, KS-DFT functionals do well, justifying their usage as the bulwark of computational actinyl chemistry over the last two to three decades.

7.
J Org Chem ; 84(18): 11856-11862, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31438666

RESUMO

Dipyrrinones are nonfluorescent yellow-pigmented constituents of bilirubin that undergo Z to E isomerization when excited with UV/blue light. Mechanical restriction of the E/Z isomerization process results in highly fluorescent compounds such as N,N-methylene-bridged dipyrrinones and xanthoglows. This manuscript describes the first examples of dipyrrinone analogues, which exhibit fluorescence without covalently linking the pyrole-pyrrolidine nitrogen atoms. Instead these analogues restrict E/Z isomerization through intramolecular hydrogen bonding, resulting in mild to moderately fluorescent compounds (ΦF = 0.01-0.30). Further, in basic solutions (pH > 12), the dipyrrinone analogues readily deprotonate and absorption/emission profiles of the fluorophores red-shifts by 10-49 nm. Directly from commercial materials, 10 analogues were prepared in 41-96% yields in one step. To estimate the capacity of which intramolecular hydrogen bonding has upon restricting the E/Z isomerization process, conformational energies of all analogues, in both the protonated and deprotonated species, were explored by using quantum-mechanical density functional theory (DFT) and time-dependent DFT calculations. The computed strengths of the intramolecular hydrogen bonds are related to the barriers of rotation about the 5-6 bond and both correlate with the experimentally measured fluorescence quantum yields.


Assuntos
Bilirrubina/química , Corantes Fluorescentes/síntese química , Imidazóis/química , Isoindóis/química , Pirazóis/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...