Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 12127, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935963

RESUMO

Ascending thoracic aortic aneurysm (ATAA) is a multifactorial disease with a strong inflammatory component. Surgery is often required to prevent aortic rupture and dissection. We performed gene expression analysis (Illumina HumanHT-12 version 3 Expression BeadChip) for 32 samples from ATAA (26 without/6 with dissection), and 28 left internal thoracic arteries (controls) collected in Tampere Vascular study. We compared expression profiles and conducted pathway analysis using Ingenuity Pathway Analysis (IPA) to reveal differences between ATAA and a healthy artery wall. Almost 5000 genes were differentially expressed in ATAA samples compared to controls. The most downregulated gene was homeobox (HOX) A5 (fold change, FC = -25.3) and upregulated cadherin-2 (FC = 12.6). Several other HOX genes were also found downregulated (FCs between -25.3 and -1.5, FDR < 0.05). 43, mostly inflammatory, canonical pathways in ATAA were found to be significantly (p < 0.05, FDR < 0.05) differentially expressed. The results remained essentially the same when the 6 dissected ATAA samples were excluded from the analysis. We show for the first time on genome level that ATAA is an inflammatory process, revealing a more detailed molecular pathway level pathogenesis. We propose HOX genes as potentially important players in maintaining aortic integrity, altered expression of which might be important in the pathobiology of ATAA.


Assuntos
Aneurisma da Aorta Torácica/genética , Transdução de Sinais , Transcriptoma , Idoso , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Feminino , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade
2.
Sci Rep ; 7: 41483, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128285

RESUMO

Cardiovascular diseases due to atherosclerosis are the leading cause of death globally. We aimed to investigate the potentially altered gene and pathway expression in advanced peripheral atherosclerotic plaques in comparison to healthy control arteries. Gene expression analysis was performed (Illumina HumanHT-12 version 3 Expression BeadChip) for 68 advanced atherosclerotic plaques (15 aortic, 29 carotid and 24 femoral plaques) and 28 controls (left internal thoracic artery (LITA)) from Tampere Vascular Study. Dysregulation of individual genes was compared to healthy controls and between plaques from different arterial beds and Ingenuity pathway analysis was conducted on genes with a fold change (FC) > ±1.5 and false discovery rate (FDR) < 0.05. 787 genes were significantly differentially expressed in atherosclerotic plaques. The most up-regulated genes were osteopontin and multiple MMPs, and the most down-regulated were cell death-inducing DFFA-like effector C and A (CIDEC, CIDEA) and apolipoprotein D (FC > 20). 156 pathways were differentially expressed in atherosclerotic plaques, mostly inflammation-related, especially related with leukocyte trafficking and signaling. In artery specific plaque analysis 50.4% of canonical pathways and 41.2% GO terms differentially expressed were in common for all three arterial beds. Our results confirm the inflammatory nature of advanced atherosclerosis and show novel pathway differences between different arterial beds.


Assuntos
Perfilação da Expressão Gênica , Placa Aterosclerótica/genética , Aterosclerose/genética , Estudos de Casos e Controles , Regulação da Expressão Gênica , Humanos , Artérias Torácicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...