Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(546)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493790

RESUMO

Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous hematological malignancy. Although immunotherapy may be an attractive modality to exploit in patients with AML, the ability to predict the groups of patients and the types of cancer that will respond to immune targeting remains limited. This study dissected the complexity of the immune architecture of AML at high resolution and assessed its influence on therapeutic response. Using 442 primary bone marrow samples from three independent cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease classes and revealed critical differences in immune gene expression across age groups and molecular disease subtypes. Interferon (IFN)-γ-related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles provides insights into the immuno-biology of AML and could inform the delivery of personalized immunotherapies to IFN-γ-dominant AML subtypes.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Leucemia Mieloide Aguda , Adulto , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Criança , Humanos , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Sci Rep ; 9(1): 4392, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867460

RESUMO

Thiamine monophosphate kinase (ThiL) catalyzes the last step of thiamine pyrophosphate (TPP) synthesis, the ATP-dependent phosphorylation of thiamine monophosphate (TMP) to thiamine pyrophosphate. We solved the structure of ThiL from the human pathogen A. baumanii in complex with a pair of substrates TMP and a non-hydrolyzable adenosine triphosphate analog, and in complex with a pair of products TPP and adenosine diphosphate. High resolution of the data and anomalous diffraction allows for a detailed description of the binding mode of substrates and products, and their metal environment. The structures further support a previously proposed in-line attack reaction mechanism and show a distinct variability of metal content of the active site.


Assuntos
Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Cristalização , Tiamina Pirofosfato/metabolismo
3.
PLoS Biol ; 16(5): e2006192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782488

RESUMO

Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and ß2-microglobulin (ß2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to ß2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Receptores Fc/metabolismo , Sítio Alostérico , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...