Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0086023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830817

RESUMO

IMPORTANCE: Rotaviruses are important causes of severe gastroenteritis in young children. A characteristic feature of rotaviruses is that they copy ribonucleic acid (RNA) inside of the viral particle. In fact, the viral polymerase (VP1) only functions when it is connected to the viral inner core shell protein (VP2). Here, we employed a biochemical assay to identify which sites of VP2 are critical for regulating VP1 activity. Specifically, we engineered VP2 proteins to contain amino acid changes at structurally defined sites and assayed them for their capacity to support VP1 function in a test tube. Through this work, we were able to identify several VP2 residues that appeared to regulate the activity of the polymerase, positively and negatively. These results are important because they help explain how rotavirus synthesizes its RNA while inside of particles and they identify targets for the future rational design of drugs to prevent rotavirus disease.


Assuntos
RNA Polimerases Dirigidas por DNA , Rotavirus , Proteínas do Core Viral , Proteínas do Capsídeo/metabolismo , RNA/metabolismo , Rotavirus/fisiologia , Proteínas do Core Viral/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo
2.
Curr Protoc ; 3(3): e702, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36939277

RESUMO

Proteins frequently function in high-order complexes. Defining protein-protein interactions is essential to acquiring a full understanding of their activity and regulation. Proximity biotinylation has emerged as a highly specific approach to capture transient and stable interactions in living cells or organisms. Proximity biotinylation exploits promiscuous biotinylating enzymes fused to a bait protein, resulting in the biotinylation of adjacent endogenous proteins. Biotinylated interactors are purified under very strict conditions and identified by mass spectrometry to obtain a high-confidence list of candidate binding partners. AirID is a recently described biotin ligase specifically engineered for proximity labeling. This protocol details proximity biotinylation by AirID, using protein complexes that form during a type I interferon response as an example. It covers the construction and validation of AirID fusion proteins and the enrichment and identification of biotinylated interactors. We describe a variation on the protocol using splitAirID. In this case, AirID is split into two inactive fragments and ligase activity is only restored upon dimerization of the bait proteins. This permits selective detection of proteins that interact with homo- or heterodimeric forms of the bait. The protocol considers design strategies, optimization, and the properties of different biotin ligases to identify optimal conditions for each experimental question. We also discuss common pitfalls and how to troubleshoot them. These approaches allow proximity biotinylation to be a powerful tool for defining protein interactomes. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Construction and functional validation of AirID fusion proteins Alternate Protocol: Construction and functional validation of splitAirID fusion proteins Support Protocol: Western blot for biotinylated proteins Basic Protocol 2: Biotinylation, enrichment, and identification of protein interactors.


Assuntos
Biotina , Proteínas , Biotina/química , Biotinilação , Proteínas/química , Western Blotting , Ligases
3.
Virus Res ; 302: 198488, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146610

RESUMO

Rotaviruses are 11-segmented double-stranded RNA viruses and important causes of acute gastroenteritis in young children. To investigate the functions of specific viral proteins during the rotavirus lifecycle, temperature-sensitive (ts) mutants were previously created using a cultivatable simian strain (SA11) and chemical mutagenesis. These ts SA11 mutants replicate more efficiently at the permissive temperature of 31 °C than at the non-permissive temperature of 39 °C. Prototype strains SA11-tsC, SA11-tsF, and SA11-tsG were mapped to the genes encoding structural proteins VP1, VP2, and VP6, respectively, and putative ts lesions were identified using Sanger sequencing. However, additional background mutations in their genomes had hampered validation of the ts lesions and confounded their use in mechanistic studies. Here, we employed plasmid only-based reverse genetics to engineer recombinant (r) SA11 rotaviruses containing only the putative ts lesions of SA11-tsC (L138P change in VP1), SA11-tsF (A387D change in VP2) or SA11-tsG (S10T, D13H, and A121G changes in VP6). For simplicity, we refer to these newly-engineered, isogenic viruses as rSA11-tsVP1, rSA11-tsVP2, and rSA11-tsVP6. Single-cycle growth assays revealed that these mutants indeed exhibit ts phenotypes with significantly diminished titers (>1.5-logs) at 39 °C versus 31 °C. The rSA11 ts mutants proved genetically stable at the population-level following 3 sequential passages at 39 °C, but individual revertant clones were detected in plaque assays. Heat sensitivity experiments showed that pre-incubation of rSA11-tsVP1 or rSA11-tsVP2, but not rSA11-tsVP6, at 39 °C diminished replication at 31 °C. This result indicates that the ts lesions in VP1 and VP2 affect the incoming virion but those in VP6 affect a later stage of the viral lifecycle. In silico molecular dynamics simulations predicted temperature-dependent, long-range effects of the S10T, D13H, and/or A121G changes on the VP6 structure. Altogether, our results confirm the ts lesions of the original SA11-tsC, SA11-tsF, and SA11-tsG mutants, provide a new set of isogenic strains for investigating aspects of rotavirus replication, and shed light on how the ts lesions might impact VP1, VP2, or VP6 functions.


Assuntos
Rotavirus , Engenharia Genética , Rotavirus/genética , Temperatura , Proteínas Virais/genética , Vírion
4.
Structure ; 28(6): 595-597, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492410

RESUMO

In this issue of Structure, Kaelber et al. (2020) use cryo-EM and synthetic decoy maps to reveal the patterning of 10 polymerase complexes within FAKV, a Reoviridae family member containing 9 genome segments. Their findings support a model for FAKV assembly that has implications for the entire Reoviridae family.


Assuntos
Reoviridae , Microscopia Crioeletrônica , Vírion
5.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31341048

RESUMO

The rotavirus polymerase VP1 mediates all stages of viral RNA synthesis within the confines of subviral particles and while associated with the core shell protein VP2. Transcription (positive-strand RNA [+RNA] synthesis) by VP1 occurs within double-layered particles (DLPs), while genome replication (double-stranded RNA [dsRNA] synthesis) by VP1 occurs within assembly intermediates. VP2 is critical for VP1 enzymatic activity; yet, the mechanism by which the core shell protein triggers polymerase function remains poorly understood. Structural analyses of transcriptionally competent DLPs show that VP1 is located beneath the VP2 core shell and sits slightly off-center from each of the icosahedral 5-fold axes. In this position, the polymerase is contacted by the core shell at 5 distinct surface-exposed sites, comprising VP1 residues 264 to 267, 547 to 550, 614 to 620, 968 to 980, and 1022 to 1025. Here, we sought to test the functional significance of these VP2 contact sites on VP1 with regard to polymerase activity. We engineered 19 recombinant VP1 (rVP1) proteins that contained single- or multipoint alanine mutations within each individual contact site and assayed them for the capacity to synthesize dsRNA in vitro in the presence of rVP2. Three rVP1 mutants (E265A/L267A, R614A, and D971A/S978A/I980A) exhibited diminished in vitro dsRNA synthesis. Despite their loss-of-function phenotypes, the mutants did not show major structural changes in silico, and they maintained their overall capacity to bind rVP2 in vitro via their nonmutated contact sites. These results move us toward a mechanistic understanding of rotavirus replication and identify precise VP2-binding sites on the polymerase surface that are critical for its enzymatic activation.IMPORTANCE Rotaviruses are important pathogens that cause severe gastroenteritis in the young of many animals. The viral polymerase VP1 mediates all stages of viral RNA synthesis, and it requires the core shell protein VP2 for its enzymatic activity. Yet, there are several gaps in knowledge about how VP2 engages and activates VP1. Here, we probed the functional significance of 5 distinct VP2 contact sites on VP1 that were revealed through previous structural studies. Specifically, we engineered alanine amino acid substitutions within each of the 5 VP1 regions and assayed the mutant polymerases for the capacity to synthesize RNA in the presence of VP2 in a test tube. Our results identified residues within 3 of the VP2 contact sites that are critical for robust polymerase activity. These results are important because they enhance the understanding of a key step of the rotavirus replication cycle.


Assuntos
Proteínas do Capsídeo/genética , Proteínas Mutantes/química , RNA de Cadeia Dupla/química , RNA Viral/química , RNA Polimerase Dependente de RNA/química , Rotavirus , Sequência de Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Mutação com Perda de Função , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Rotavirus/genética , Rotavirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...