Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

2.
Forensic Sci Int ; 319: 110678, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444895

RESUMO

A digital colour image may be composed of hundreds of thousands of pixels, every pixel exhibiting a single colour. Each colour can be described as a combination of red, green and blue (RGB) components, of discrete values between 0-255. The RGB data contained within the pixels of an image could, therefore, be used to quantitatively establish the colour of nuclear material powders from digital images, particularly for use in nuclear forensics applications, where there is a need for consistent, objective analysis. This paper sets out a standard method for the photography and analysis of digital images of uranium oxide powder, for the objective quantification of colour by mean RGB values. Eight heat treated (up to 550°C) powder samples of studtite ([(UO2)(O2)(H2O)2]·2H2O) were photographed at room temperature and analysed by the RGB method. Hue, saturation and value of the coloured samples were obtained alongside mean RGB values, both of which were used to successfully determine the heating temperatures of unknown specimens of studtite.

3.
Inorg Chem ; 60(4): 2553-2562, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33491452

RESUMO

Low-temperature soft chemical synthesis routes to transition-metal nitrides are of interest as an alternative to conventional high-temperature ammonolysis reactions involving large volumes of chemotoxic NH3 gas. One such method is the reaction between metal oxides and NaNH2 at ca. 200 °C to yield the counterpart nitrides; however, there remains uncertainty regarding the reaction mechanism and product phase assemblage (in particular, noncrystalline components). Here, we extend the chemical tool box and mechanistic understanding of such reactions, demonstrating the nitridation of Fe3O4 by reaction with NaNH2 at 170-190 °C, via a pseudomorphic reaction. The more reduced Fe3O4 precursor enabled nitride formation at lower temperatures than the previously reported equivalent reaction with Fe2O3. The product phase assemblage, characterized by X-ray diffraction, thermogravimetric analysis, and 57Fe Mössbauer spectroscopy, comprised 49-59 mol % ε-Fe2+xN, accompanied by 29-39 mol % FeO1-xNx and 8-14 mol % γ″-FeN. The oxynitride phase was apparently noncrystalline in the recovered product but could be crystallized by heating at 180 °C. Although synthesis of transition-metal nitrides is achieved by reaction of the counterpart oxide with NaNH2, it is evident from this investigation that the product phase assemblage may be complex, which could prove a limitation if the objective is to produce a single-phase product with well-defined electrical, magnetic, or other physical properties for applications. However, the significant yield of the FeO1-xNx oxynitride phase identified in this study opens the possibility for the synthesis of metastable oxynitride phases in high yield, by reaction of a metal oxide substrate with NaNH2, with either careful control of H2O concentration in the system or postsynthetic hydrolysis and crystallization.

4.
Int J Cancer ; 148(2): 469-480, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038264

RESUMO

Prostate cancer (PCa) progression is driven by androgen receptor (AR) signaling. Unfortunately, androgen-deprivation therapy and the use of even more potent AR pathway inhibitors (ARPIs) cannot bring about a cure. ARPI resistance (ie, castration-resistant PCa, CRPC) will inevitably develop. Previously, we demonstrated that GRB10 is an AR transcriptionally repressed gene that functionally contributes to CRPC development and ARPI resistance. GRB10 expression is elevated prior to CRPC development in our patient-derived xenograft models and is significantly upregulated in clinical CRPC samples. Here, we analyzed transcriptomic data from GRB10 knockdown in PCa cells and found that AR signaling is downregulated. While the mRNA expression of AR target genes decreased upon GRB10 knockdown, AR expression was not affected at the mRNA or protein level. We further found that phosphorylation of AR serine 81 (S81), which is critical for AR transcriptional activity, is decreased by GRB10 knockdown and increased by its overexpression. Luciferase assay using GRB10-knockdown cells also indicate reduced AR activity. Immunoprecipitation coupled with mass spectrometry revealed an interaction between GRB10 and the PP2A complex, which is a known phosphatase of AR. Further validations and analyses showed that GRB10 binds to the PP2Ac catalytic subunit with its PH domain. Mechanistically, GRB10 knockdown increased PP2Ac protein stability, which in turn decreased AR S81 phosphorylation and reduced AR activity. Our findings indicate a reciprocal feedback between GRB10 and AR signaling, implying the importance of GRB10 in PCa progression.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Adaptadora GRB10/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Proteína Fosfatase 2/antagonistas & inibidores , Transdução de Sinais
5.
Inorg Chem ; 59(24): 18407-18419, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296192

RESUMO

The synthesis, structure, and thermal stability of the periodate double perovskites A2NaIO6 (A= Ba, Sr, Ca) were investigated in the context of potential application for the immobilization of radioiodine. A combination of X-ray diffraction and neutron diffraction, Raman spectroscopy, and DFT simulations were applied to determine accurate crystal structures of these compounds and understand their relative stability. The compounds were found to exhibit rock-salt ordering of Na and I on the perovskite B-site; Ba2NaIO6 was found to adopt the Fm-3m aristotype structure, whereas Sr2NaIO6 and Ca2NaIO6 adopt the P21/n hettotype structure, characterized by cooperative octahedral tilting. DFT simulations determined the Fm-3m and P21/n structures of Ba2NaIO6 to be energetically degenerate at room temperature, whereas diffraction and spectroscopy data evidence only the presence of the Fm-3m phase at room temperature, which may imply an incipient phase transition for this compound. The periodate double perovskites were found to exhibit remarkable thermal stability, with Ba2NaIO6 only decomposing above 1050 °C in air, which is apparently the highest recorded decomposition temperature so far recorded for any iodine bearing compound. As such, these compounds offer some potential for application in the immobilization of iodine-129, from nuclear fuel reprocessing, with an iodine incorporation rate of 25-40 wt%. The synthesis of these compounds, elaborated here, is also compatible with both current conventional and future advanced processes for iodine recovery from the dissolver off-gas.

6.
Nat Neurosci ; 22(1): 37-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559478

RESUMO

Accumulation of tau and amyloid-ß are two pathologic hallmarks of Alzheimer's disease. We conducted an epigenome-wide association study using the histone 3 lysine 9 acetylation (H3K9ac) mark in 669 aged human prefrontal cortices; in contrast with amyloid-ß, tau protein burden had a broad effect on the epigenome, affecting 5,990 of 26,384 H3K9ac domains. Tau-related alterations aggregated in large genomic segments reflecting spatial chromatin organization, and the magnitude of these effects correlated with the segment's nuclear lamina association. Functional relevance of these chromatin changes was demonstrated by (1) consistent transcriptional changes in three independent datasets and (2) similar findings in two mouse models of Alzheimer's disease. Finally, we found that tau overexpression in induced pluripotent stem cell-derived neurons altered chromatin structure and that these effects could be blocked by a small molecule predicted to reverse the tau effect. Thus, we report broad tau-driven chromatin rearrangements in the aging human brain that may be reversible with heat-shock protein 90 (Hsp90) inhibitors.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Epigênese Genética , Histonas/metabolismo , Proteínas tau/metabolismo , Acetilação , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Feminino , Histonas/genética , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Proteínas tau/genética
7.
Hum Mol Genet ; 28(5): 718-735, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371777

RESUMO

Large-scale 'omic' studies investigating the pathophysiological processes that lead to Alzheimer's disease (AD) dementia have identified an increasing number of susceptibility genes, many of which are poorly characterized and have not previously been implicated in AD. Here, we evaluated the utility of human induced pluripotent stem cell-derived neurons and astrocytes as tools to systematically test AD-relevant cellular phenotypes following perturbation of candidate genes identified by genome-wide studies. Lentiviral-mediated delivery of shRNAs was used to modulate expression of 66 genes in astrocytes and 52 genes in induced neurons. Five genes (CNN2, GBA, GSTP1, MINT2 and FERMT2) in neurons and nine genes (CNN2, ITGB1, MINT2, SORL1, VLDLR, NPC1, NPC2, PSAP and SCARB2) in astrocytes significantly altered extracellular amyloid-ß (Aß) levels. Knockdown of AP3M2, CNN2, GSTP1, NPC1, NPC2, PSAP and SORL1 reduced interleukin-6 levels in astrocytes. Only knockdown of FERMT2 led to a reduction in the proportion of TAU that is phosphorylated. Further, CRISPR-Cas9 targeting of FERMT2 in both familial AD (fAD) and fAD-corrected human neurons validated the findings of reduced extracellular Aß. Interestingly, FERMT2 reduction had no effect on the Aß42:40 ratio in corrected neurons and a reduction of phospho-tau, but resulted in an elevation in Aß42:40 ratio and no reduction in phospho-tau in fAD neurons. Taken together, this study has prioritized 15 genes as being involved in contributing to Aß accumulation, phosphorylation of tau and/or cytokine secretion, and, as illustrated with FERMT2, it sets the stage for further cell-type-specific dissection of the role of these genes in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neurônios/metabolismo , Proteostase , Proteínas tau/metabolismo , Biomarcadores , Encéfalo/metabolismo , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Marcação de Genes , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fenótipo
8.
Nat Neurosci ; 21(6): 811-819, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29802388

RESUMO

There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Redes e Vias Metabólicas , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Bases de Dados Factuais , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Transcriptoma , Proteínas tau/genética
9.
Brain Res ; 1656: 98-106, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459988

RESUMO

The ability to accurately and systematically evaluate the cellular mechanisms underlying human neurodegenerative disorders such as Alzheimer׳s disease (AD) should lead to advancements in therapeutics. Recent developments in human induced pluripotent stem cells (iPSCs) have afforded the opportunity to use human neurons and glia to study cellular changes involved in neurological diseases. iPSCs have the potential to be differentiated into AD-relevant cell types, including forebrain neurons, astrocytes, and microglia. This permits the evaluation of individual cell types in isolation or in concert, thus modeling the interdependence of cell types within the brain. When discussing the potential of modeling AD with iPSCs, it is important to remember that the umbrella diagnosis of "Alzheimer׳s disease" represents a disease that is heterogeneous in terms of age of onset, underlying causes, and at times precise pathology. The ability of iPSCs to be derived from an array of AD patients allows for a closer examination of the mechanism of disease progression in particular subsets of subjects, who may have different mutations and allelic variants affecting their risk for disease. Disease mechanisms can be probed both by the genetic manipulation of iPSCs and by modifications to the cellular environment by chemical treatment. These studies may lead not only to the refinement of known pathways implicated in AD, but also to the identification of novel pathways heretofore unaffiliated with disease pathology. In this review, we describe the potential of iPSC models to transform our understanding of AD and to lead to valuable advancements in therapeutics. This article is part of a Special Issue entitled SI: Exploiting human neurons.


Assuntos
Doença de Alzheimer/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Humanos
10.
J Neurosci ; 36(5): 1730-46, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843653

RESUMO

Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid ß (Aß) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aß and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. SIGNIFICANCE STATEMENT: We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid ß (Aß) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we identify a previously unappreciated subpopulation that secretes high levels of Aß in the absence of detectable sAPPα. Further, we show that multiple cell types secrete high levels of Aß and sAPPα, but cells expressing GABAergic neuronal markers are overrepresented. Finally, we show that astrocytes are competent to secrete high levels of Aß and therefore may be a significant contributor to Aß accumulation in the brain.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Análise de Célula Única/métodos , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/análise , Animais , Astrócitos/química , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/química , Masculino , Neurônios/química
11.
J Biol Chem ; 289(22): 15374-83, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24742670

RESUMO

Aberrant amyloid ß (Aß) production plays a causal role in Alzheimer disease pathogenesis. A major cellular pathway for Aß generation is the activity-dependent endocytosis and proteolytic cleavage of the amyloid precursor protein (APP). However, the molecules controlling activity-dependent APP trafficking in neurons are less defined. Mints are adaptor proteins that directly interact with the endocytic sorting motif of APP and are functionally important in regulating APP endocytosis and Aß production. We analyzed neuronal cultures from control and Mint knockout neurons that were treated with either glutamate or tetrodotoxin to stimulate an increase or decrease in neuronal activity, respectively. We found that neuronal activation by glutamate increased APP endocytosis, followed by elevated APP insertion into the cell surface, stabilizing APP at the plasma membrane. Conversely, suppression of neuronal activity by tetrodotoxin decreased APP endocytosis and insertion. Interestingly, we found that activity-dependent APP trafficking and Aß generation were blocked in Mint knockout neurons. We showed that wild-type Mint1 can rescue APP internalization and insertion in Mint knockout neurons. In addition, we found that Mint overexpression increased excitatory synaptic activity and that APP was internalized predominantly to endosomes associated with APP processing. We demonstrated that presenilin 1 (PS1) endocytosis requires interaction with the PDZ domains of Mint1 and that this interaction facilitates activity-dependent colocalization of APP and PS1. These findings demonstrate that Mints are necessary for activity-induced APP and PS1 trafficking and provide insight into the cellular fate of APP in endocytic pathways essential for Aß production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Caderinas/fisiologia , Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/fisiopatologia , Animais , Caderinas/genética , Proteínas de Transporte/genética , Linhagem Celular , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Presenilina-1/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/fisiologia , Tetrodotoxina/farmacologia
12.
J Neurosci ; 32(28): 9613-25, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22787047

RESUMO

Mint adaptor proteins bind to the membrane-bound amyloid precursor protein (APP) and affect the production of pathogenic amyloid-ß (Aß) peptides related to Alzheimer's disease (AD). Previous studies have shown that loss of each of the three Mint proteins delays the age-dependent production of amyloid plaques in transgenic mouse models of AD. However, the cellular and molecular mechanisms underlying Mints effect on amyloid production are unclear. Because Aß generation involves the internalization of membrane-bound APP via endosomes and Mints bind directly to the endocytic motif of APP, we proposed that Mints are involved in APP intracellular trafficking, which in turn, affects Aß generation. Here, we show that APP endocytosis was attenuated in Mint knock-out neurons, revealing a role for Mints in APP trafficking. We also show that the endocytic APP sorting processes are regulated by Src-mediated phosphorylation of Mint2 and that internalized APP is differentially sorted between autophagic and recycling trafficking pathways. A Mint2 phosphomimetic mutant favored endocytosis of APP along the autophagic sorting pathway leading to increased intracellular Aß accumulation. Conversely, the Mint2 phospho-resistant mutant increased APP localization to the recycling pathway and back to the cell surface thereby enhancing Aß42 secretion. These results demonstrate that Src-mediated phosphorylation of Mint2 regulates the APP endocytic sorting pathway, providing a mechanism for regulating Aß secretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Quinases da Família src/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Biotinilação/métodos , Proteínas de Transporte/genética , Células Cultivadas , Córtex Cerebral/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Endocitose/genética , Endocitose/fisiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/genética , Presenilina-1/genética , Transporte Proteico/genética , Transfecção , Quinases da Família src/genética
13.
BMC Syst Biol ; 2: 68, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18652669

RESUMO

BACKGROUND: Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. RESULTS: We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and show how this viscoelastic model can be incorporated into LSM simulations to recreate the observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our techniques by simulating the cell shape changes elicited by the chemotactic response to an external chemoattractant gradient. CONCLUSION: Our results provide a simple but effective means of incorporating cellular deformations into mathematical simulations of cell signaling. Such methods will be useful for simulating important cellular events such as chemotaxis and cytokinesis.


Assuntos
Forma Celular , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Membrana Celular/metabolismo , Tamanho Celular , Quimiotaxia , Citoesqueleto/metabolismo , Dictyostelium/citologia , Elasticidade , Pressão , Sensibilidade e Especificidade , Viscosidade
14.
Proc Natl Acad Sci U S A ; 105(7): 2439-44, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268319

RESUMO

Vascular dysfunction has been reported in human cases of anthrax, in mammalian models of Bacillus anthracis, and in animals injected with anthrax toxin proteins. To examine anthrax lethal toxin effects on intact blood vessels, we developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function. Vascular defects monitored in hundreds of embryos enabled us to define four stages of phenotypic progression leading to circulatory dysfunction. We demonstrated increased endothelial permeability as an early consequence of toxin action by tracking the extravasation of fluorescent microspheres in toxin-injected embryos. Lethal toxin did not induce a significant amount of cell death in embryonic tissues or blood vessels, as shown by staining with acridine orange, and endothelial cells in lethal toxin-injected embryos continued to divide at the normal rate. Vascular permeability is strongly affected by the VEGF/vascular permeability factor (VPF) signaling pathway, and we were able to attenuate anthrax lethal toxin effects with chemical inhibitors of VEGFR function. Our study demonstrates the importance of vascular permeability in anthrax lethal toxin action and the need for further investigation of the cardiovascular component of human anthrax disease.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Permeabilidade da Membrana Celular , Neovascularização Fisiológica/efeitos dos fármacos , Peixe-Zebra , Animais , Morte Celular/efeitos dos fármacos , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Dados de Sequência Molecular , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...