Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 13(30): 3326-3347, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34313266

RESUMO

The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Epiderme , Humanos , Nanomedicina , Agulhas
2.
Langmuir ; 35(14): 4909-4917, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30817890

RESUMO

Nanoparticles (NPs) functionalized with antibodies on their surface are used in a wide range of research applications. However, the bioconjugation chemistry between the antibodies and the surface of nanoparticles can be very challenging, often accompanied by several undesired effects such as nanoparticle aggregation, antibody denaturation, or poor target recognition of the surface-bound antibodies. Here, we report on a synthesis of fluorescent silica nanoparticle-antibody (NP-Ab) conjugates, in which polycarboxylated dextran is used as the multivalent linker. First, we present a synthetic methodology to prepare polycarboxylated dextrans with molecular weights of 6, 40, and 70 kDa. Second, we used water-soluble, polycarboxylated dextrans as a multivalent spacers/linkers to immobilize antibodies onto fluorescent silica nanoparticles. The prepared NP-Ab conjugates were tested in a direct binding assay format in both phosphate-buffered saline buffer and whole serum to investigate the role of the spacer/linker in the capacity of the NP-Ab to specifically recognize their target in "clean" and also in complex media. We have compared the dextran conjugates with two standards: (a) NP-Ab with antibodies attached on the surface of nanoparticles through the classical physical adsorption method and (b) NP-Ab where an established poly(amidoamine) (PAMAM) dendrimer was used as the linker. Our results showed that the polycarboxylated 6 kDa dextran facilitates antibody immobilization efficiency of nearly 92%. This was directly translated into the improved molecular recognition of the NP-Ab, which was measured by a direct binding assay. The signal-to-noise ratio in buffered solution for the 6 kDa dextran NP-Ab conjugates was 81, nearly 3 times higher than that of PAMAM G4.5 conjugates and 9 times higher than the physically adsorbed NP-Ab sample. In whole serum, the effect of 6 kDa dextran was more hindered due to the formation of protein corona but the signal-to-noise ratio was at least double that of the physically adsorbed NP-Ab conjugates.


Assuntos
Anticorpos/análise , Dextranos/química , Nanopartículas/análise , Fosfatos/química , Solução Salina/química , Soluções Tampão , Dextranos/sangue , Dextranos/síntese química , Corantes Fluorescentes/análise , Tamanho da Partícula , Dióxido de Silício/análise , Propriedades de Superfície
3.
Biochemistry ; 42(20): 6234-40, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12755627

RESUMO

Influenza virus polymerase uses capped RNA primers for transcription initiation in infected cells. This unique mechanism involves the specific binding of the polymerase to capped mRNA precursors in the nucleus of infected cells. These host RNAs are then cleaved by a polymerase associated endonuclease at a position 10-15 nucleotides downstream of the cap structure. The resulting capped RNA oligonucleotides function as primers for transcription initiation. The viral cap binding site has previously been mapped to the PB2 subunit of the trimeric influenza polymerase complex. We have established a quantitative assay system for the analysis of cap interaction with PB2 as part of the native, viral ribonucleoprotein complex (RNP) using a specific UV cross-linking approach. Cap binding was not affected by the RNase pretreatment of the capped RNA substrate and cap binding was not inhibited by excess uncapped RNA, indicating that under the assay conditions, the majority of the binding energy was contributed by the interaction with the cap structure. Binding to 7-methyl-GTP was found to involve synergistic interaction with 7-methyl guanosine and triphosphate binding subsites. A similar mode of interaction with 7-methyl-GTP was found for human cap binding protein eIF4E. However, the potency of 7-methyl-GTP for cap binding inhibition was 200-fold stronger with eIF4E and had a higher contribution from the triphosphate moiety as compared to influenza RNP. Due to this difference in cap subsite interaction, it was possible to identify novel cap analogues, which selectively interact with influenza virus, but not human cap binding protein.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Vírus da Influenza A/metabolismo , Capuzes de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Reagentes de Ligações Cruzadas , Endonucleases/metabolismo , Humanos , Técnicas In Vitro , Vírus da Influenza A/fisiologia , Análogos de Capuz de RNA/genética , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/genética , Proteínas Recombinantes/metabolismo , Raios Ultravioleta , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...