Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(2): 368-373, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36820322

RESUMO

Ultraviolet light-emitting diodes (LEDs) suffer from a low wall-plug efficiency, which is to a large extent limited by the poor light extraction efficiency (LEE). A thin-film flip-chip (TFFC) design with a roughened N-polar AlGaN surface can substantially improve this. We here demonstrate an enabling technology to realize TFFC LEDs emitting in the UVB range (280-320 nm), which includes standard LED processing in combination with electrochemical etching to remove the substrate. The integration of the electrochemical etching is achieved by epitaxial sacrificial and etch block layers in combination with encapsulation of the LED. The LEE was enhanced by around 25% when the N-polar AlGaN side of the TFFC LEDs was chemically roughened, reaching an external quantum efficiency of 2.25%. By further optimizing the surface structure, our ray-tracing simulations predict a higher LEE from the TFFC LEDs than flip-chip LEDs and a resulting higher wall-plug efficiency.

3.
Sci Rep ; 11(1): 14647, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282225

RESUMO

Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15-40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 15-30 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.


Assuntos
Desinfecção/métodos , Resistência a Múltiplos Medicamentos/efeitos da radiação , Fenômenos Fisiológicos da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Infecção Hospitalar/prevenção & controle , Dano ao DNA , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Complicações Pós-Operatórias/prevenção & controle , Tolerância a Radiação/fisiologia , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Suínos , Raios Ultravioleta/efeitos adversos
4.
Opt Lett ; 45(4): 935-938, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058510

RESUMO

Single longitudinal mode continuous-wave operation of distributed-feedback (DFB) laser diodes based on GaN is demonstrated using laterally coupled 10th-order surface Bragg gratings. The gratings consist of V-shaped grooves alongside a 1.5 µm wide p-contact stripe fabricated by using electron-beam lithography and plasma etching. By varying the period of the Bragg grating, the lasing wavelength could be adjusted between 404.8 and 408.5 nm. The feasibility of this device concept was confirmed by mode-hop-free operation up to an optical output power of 90 mW, a low temperature sensitivity of the lasing wavelength, and a Gaussian lateral far-field distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...