Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microb Cell Fact ; 22(1): 8, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635695

RESUMO

Purification of L-methionine γ-lyase (MGL) from A. fumigatus was sequentially conducted using heat treatment and gel filtration, resulting in 3.04 of purification fold and 73.9% of enzymatic recovery. The molecular mass of the purified MGL was approximately apparent at 46 KDa based on SDS-PAGE analysis. The enzymatic biochemical properties showed a maximum activity at pH 7 and exhibited plausible stability within pH range 5.0-7.5; meanwhile the highest catalytic activity of MGL was observed at 30-40 °C and the enzymatic stability was noted up to 40 °C. The enzyme molecule was significantly inhibited in the presence of Cu2+, Cd2+, Li2+, Mn2+, Hg2+, sodium azide, iodoacetate, and mercaptoethanol. Moreover, MGL displayed a maximum activity toward the following substrates, L-methionine < DL-methionine < Ethionine < Cysteine. Kinetic studies of MGL for L-methioninase showed catalytic activity at 20.608 mM and 12.34568 µM.min-1. Furthermore, MGL exhibited anticancer activity against cancerous cell lines, where IC50 were 243 ± 4.87 µg/ml (0.486 U/ml), and 726 ± 29.31 µg/ml (1.452 U/ml) against Hep-G2, and HCT116 respectively. In conclusion, A. fumigatus MGL had good catalytic properties along with significantly anticancer activity at low concentration which makes it a probably candidate to apply in the enzymotherapy field.


Assuntos
Aspergillus fumigatus , Liases de Carbono-Enxofre , Aspergillus fumigatus/metabolismo , Cinética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Metionina
3.
Biotechnol Rep (Amst) ; 36: e00770, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36338578

RESUMO

Fungi are potential biocontrol agents and rich sources of secondary metabolites with demonstrated biological activities. This study aimed to isolate and identify fungi from surface-sterilized honeybees (Apis mellifera), as well as to evaluate their biological activities. One fungal isolate was obtained and identified morphologically and genetically as Mucor bainieri MK-Bee-2. Gas chromatography-mass spectroscopy (GC-MS) analysis of fungus crude extract, showed the existence of six major metabolites representing 92.48% of the total peak area. The crude extract of Mucor bainieri MK-Bee-2 was tested for antimicrobial, antioxidant, and antitumor activities. It demonstrated wide antimicrobial activities against human pathogenic Gram-positive and Gram-negative bacterial strains, as well as Candida albicans, with MIC values ranged from 62.5 to 250 µg/ml. The results revealed that the extract exhibited considerable antioxidant activities indicated by strong inhibition of both DPPH and ABTS free radicals. Additionally, the extract exhibited greater potential anticancer activity against both adenocarcinomic human non-small cell lung cancer cells (A549) [IC50 = 6.45 µg/ml], and immortal cell line hepatoma G2 (HepG2) human liver cancer cells [IC50 = 27.48 µg/ml] and higher selectivity in cancer cells than normal cell lines. Furthermore, the extract showed less cytotoxic activity against normal cells with higher IC50 values of 106.99 and 132.57 µg/ml against human lung fibroblast Wistar-38 (Wi-38) and oral epithelial cells (OEC), respectively. Taken together, the Mucor bainieri MK-Bee-2 extract comprises bioactive compounds as promising potential therapeutic candidates for the treatment of lung cancer. Strikingly, the extract sensitizes the lung cancer cells A549  to the ionizing radiation through the pro-apoptotic pathway as indicated by the annexin V flow cytometry analysis which showed that the extract reduced the apoptosis of lung cancer cells.

4.
Life (Basel) ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36362976

RESUMO

This study aims to assess the deterioration aspects of a historical manuscript dating back to the 14th century that was deposited in the Library of the Arabic Language Academy, Cairo, Egypt. The study aims at the exploration of the role of various fungal strains that had colonized this deteriorated manuscript in its biodeterioration through their efficacy in the secretion of various hydrolytic enzymes. To evaluate the deterioration, various techniques, including visual inspection, attenuated total reflectance Fourier transform infrared (ATR-FTIR), scanning electron microscopy (SEM), X-Ray diffraction analysis (XRD), color change, and pH value, were utilized. The fungal strains linked to the historical document were isolated, identified, and evaluated for their deterioration activities. The findings demonstrate that the manuscript exhibits a variety of deterioration signs including color change, brittleness and weakness, erosion, and removal of the grain surface pattern in leather binding. According to the ATR-FTIR, the chemical composition of the historical paper and leather underwent some alterations. The historical paper has a lower level of cellulose crystallinity than the control sample. Penicillium chrysogenum (two isolates), P. citrinum (four isolates), Aspergillus ustus (three isolates), A. terreus (two isolates), A. chinensis (one isolate), Paecilomyces sp. (one isolate), and Induratia sp. (one isolate) were among the fourteen fungal strains identified as being associated with the historical manuscript. These fungal strains produced several hydrolytic enzymes with high activity, such as cellulase, amylase, gelatinase, and pectinase, which play a key role in biodegradation.

5.
World J Microbiol Biotechnol ; 38(12): 244, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280608

RESUMO

The prevalence of opportunistic human fungal pathogens is increasing worldwide, and antimicrobial resistance is one of the greatest medical challenges the world faces. Therefore, this study aimed to develop a novel agent to control fungal pathogens. The honeybee products (honey, royal jelly, propolis, bee bread, and bee venom) were screened against unicellular fungal (UCF) pathogens (Cryptococcus neoformans, Kodamaea ohmeri, and Candida albicans) and the bee venom was only exhibited an inhibitory effect against them. The protein contents of crude bee venom were separated using the gel filtration technique into eight fractions which were visualized on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to confirm the presence of five bands with molecular weights of 65, 43, 21, 15, and 3 KDa. Bee venom (BV) of Apis mellifera loaded chitosan nanoparticles were prepared by the ionotropic gelation method. The encapsulation efficiency%, average size, zeta potentials, and surface appearance by Transmission electron microscope (TEM) were evaluated for the prepared nanoparticles. The minimum inhibitory concentration (MIC) of crude BV and BV loaded chitosan nanoparticles (BV-CNPs) was evaluated against the offer mentioned UCF where the MIC values of crude BV were 6.25, 3.12 & 6.25 while MIC values in the case of BV-CNPs were decreased to 3.12, 3.12 & 1.56 mg/ml against C. neoformans, K. ohmeri and C. albicans, respectively. Also, the results showed that BV-CNPs suppressed the biofilm formation as well as yeast to hyphal transition formed by the examined UCF. These results revealed that BV-CNPs are a promising natural compound for fungal pathogens treatment.


Assuntos
Venenos de Abelha , Quitosana , Cryptococcus neoformans , Nanopartículas , Própole , Humanos , Animais , Quitosana/farmacologia , Quitosana/metabolismo , Antifúngicos/farmacologia , Venenos de Abelha/farmacologia , Própole/farmacologia , Dodecilsulfato de Sódio/farmacologia , Nanopartículas/metabolismo , Candida albicans , Cryptococcus neoformans/metabolismo , Biofilmes
6.
J Fungi (Basel) ; 8(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448627

RESUMO

Herein, silver nanoparticles (Ag-NPs) were synthesized using an environmentally friendly approach by harnessing the metabolites of Aspergillus niger F2. The successful formation of Ag-NPs was checked by a color change to yellowish-brown, followed by UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD). Data showed the successful formation of crystalline Ag-NPs with a spherical shape at the maximum surface plasmon resonance of 420 nm with a size range of 3-13 nm. The Ag-NPs showed high toxicity against I, II, III, and IV instar larvae and pupae of Aedes aegypti with LC50 and LC90 values of 12.4-22.9 ppm and 22.4-41.4 ppm, respectively under laboratory conditions. The field assay exhibited the highest reduction in larval density due to treatment with Ag-NPs (10× LC50) with values of 59.6%, 74.7%, and 100% after 24, 48, and 72 h, respectively. The exposure of A. aegypti adults to the vapor of burning Ag-NPs-based coils caused a reduction of unfed individuals with a percentage of 81.6 ± 0.5% compared with the positive control, pyrethrin-based coils (86.1 ± 1.1%). The ovicidal activity of biosynthesized Ag-NPs caused the hatching of the eggs with percentages of 50.1 ± 0.9, 33.5 ± 1.1, 22.9 ± 1.1, and 13.7 ± 1.2% for concentrations of 5, 10, 15, and 20 ppm, whereas Ag-NPs at a concentration of 25 and 30 ppm caused complete egg mortality (100%). The obtained data confirmed the applicability of biosynthesized Ag-NPs to the biocontrol of A. aegypti at low concentrations.

7.
Plants (Basel) ; 10(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34579438

RESUMO

Herein, bacterial isolate HIS7 was obtained from contaminated soil and exhibited high efficacy to degrade pyrethroid insecticide cypermethrin. The HIS7 isolate was identified as Lysinibacillus cresolivuorans based on its morphology and physiology characteristics as well as sequencing of 16S rRNA. The biodegradation percentages of 2500 ppm cypermethrin increased from 57.7% to 86.9% after optimizing the environmental factors at incubation condition (static), incubation period (8-days), temperature (35 °C), pH (7), inoculum volume (3%), and the addition of extra-carbon (glucose) and nitrogen source (NH4Cl2). In soil, L. cresolivuorans HIS7 exhibited a high potential to degrade cypermethrin, where the degradation percentage increased from 54.7 to 93.1% after 7 to 42 days, respectively. The qualitative analysis showed that the bacterial degradation of cypermethrin in the soil was time-dependent. The High-Performance Liquid Chromatography (HPLC) analysis of the soil extract showed one peak for control at retention time (R.T.) of 3.460 min and appeared three peaks after bacterial degradation at retention time (R.T.) of 2.510, 2.878, and 3.230 min. The Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the successful degradation of cypermethrin by L. cresolivuorans in the soil. The toxicity of biodegraded products was assessed on the growth performance of Zea mays using seed germination and greenhouse experiment and in vitro cytotoxic effect against normal Vero cells. Data showed the toxicity of biodegraded products was noticeably decreased as compared with that of cypermethrin before degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...