Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 120(4): 1193-1202, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33409645

RESUMO

Fundamentally, larviciding with pyriproxyfen (PPF) has potential to complement Long Lasting Insecticide Nets (LLINs) and indoor residual sprays (IRS) in settings where resistance to pyrethroids and residual malaria transmission exist. In this study, we evaluated the field effectiveness of larviciding using PPF to reduce dry season productivity of mosquito breeding habitats that were located by pastoralists within the study area. Using pastoralist knowledge, dry season breeding habitats in Mofu village rural Tanzania were located and monitored for larval productivity for a period of 8 months before PPF intervention. During the intervention, six out of twelve breeding habitats were treated with Sumilarv 0.5G PPF granules. The impact of deposited PPF was monitored by recording emergence inhibition of larvae collected from treated habitats compared to the appropriate control group for a period of three months and half post-intervention. During baseline, the average proportion (+SD) of adult emerged was similar between two clusters, with (0.89 + 0.22) for the control cluster and (0.93 + 0.16) for the treatment cluster of breeding habitats. Following treatment with PPF, the average proportion (+SD) of adult emerged in the treated breeding habitats was significantly low (0.096 + 0.22) compared to adults that emerged from larvae in the untreated habitats (0.99 + 0.22) (p < 0.0001). Of all emerged adults, approximately 94% were An. gambiae s.l. and the remaining 6% were An. funestus s.l. This is the first study demonstrating the usefulness of engaging pastoralist community to locate and identify hard to find mosquito breeding habitats. Reduced productivity of the targeted habitats with PPF offers prospect of implementing PPF larviciding in dry season when habitats are few and permanent to control mosquito population in rural settings.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Malária/epidemiologia , Controle de Mosquitos , Piridinas/farmacologia , Criação de Animais Domésticos , Animais , Ecossistema , Larva/efeitos dos fármacos , Malária/parasitologia , Malária/transmissão , Estações do Ano , Tanzânia/epidemiologia
2.
BMC Res Notes ; 13(1): 251, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448376

RESUMO

OBJECTIVE: This study investigated the prevalence and distribution patterns of malaria in Kilosa district as part of non-malaria causes of febrile illnesses in children study. We enrolled febrile patients aged 2-13 years presenting at the outpatient department during the rainy and dry seasons, in 2013. For each participant, we tested for malaria parasites and identified parasite species using microscopy. We then calculated parasite density and estimated geometric mean parasite density. RESULTS: The overall malaria prevalence in febrile children was 23.7% (n = 609). Plasmodium falciparum accounted for 98.6% of malaria positives. There was a heterogeneous distribution of malaria cases among the 17 wards constituting the catchment area. A high proportion (69.4%, n = 144) of malaria positive individuals had high parasite densities. Individuals who were enrolled in the rainy season had higher geometric mean parasite density (15415.1 parasites/µl, 95% CI 10735.3-22134.9) compared to the dry season (6115.3 parasites/µl, 95% CI 4237.8-8824.6). The relatively high malaria prevalence recorded in Kilosa, an area considered low endemicity, calls for concerted effort in documenting malaria burden at fine geographical scales and tailor preventive and control strategies that target hotspots of high malaria transmission.


Assuntos
Malária Falciparum/parasitologia , Malária/epidemiologia , Parasitemia/epidemiologia , Plasmodium falciparum/isolamento & purificação , Adolescente , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Feminino , Febre/epidemiologia , Humanos , Malária/sangue , Malária/diagnóstico , Masculino , Microscopia , Pacientes Ambulatoriais , Prevalência , Chuva , Estações do Ano , Tanzânia/epidemiologia
3.
Parasit Vectors ; 11(1): 236, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642937

RESUMO

BACKGROUND: Controlled blood-feeding is essential for maintaining laboratory colonies of disease-transmitting mosquitoes and investigating pathogen transmission. We evaluated a low-cost artificial feeding (AF) method, as an alternative to direct human feeding (DHF), commonly used in mosquito laboratories. METHODS: We applied thinly-stretched pieces of polytetrafluoroethylene (PTFE) membranes cut from locally available seal tape (i.e. plumbers tape, commonly used for sealing pipe threads in gasworks or waterworks). Approximately 4 ml of bovine blood was placed on the bottom surfaces of inverted Styrofoam cups and then the PTFE membranes were thinly stretched over the surfaces. The cups were filled with boiled water to keep the blood warm (~37 °C), and held over netting cages containing 3-4 day-old inseminated adults of female Aedes aegypti, Anopheles gambiae (s.s.) or Anopheles arabiensis. Blood-feeding success, fecundity and survival of mosquitoes maintained by this system were compared against DHF. RESULTS: Aedes aegypti achieved 100% feeding success on both AF and DHF, and also similar fecundity rates (13.1 ± 1.7 and 12.8 ± 1.0 eggs/mosquito respectively; P > 0.05). An. arabiensis had slightly lower feeding success on AF (85.83 ± 16.28%) than DHF (98.83 ± 2.29%) though these were not statistically different (P > 0.05), and also comparable fecundity between AF (8.82 ± 7.02) and DHF (8.02 ± 5.81). Similarly, for An. gambiae (s.s.), we observed a marginal difference in feeding success between AF (86.00 ± 10.86%) and DHF (98.92 ± 2.65%), but similar fecundity by either method. Compared to DHF, mosquitoes fed using AF survived a similar number of days [Hazard Ratios (HR) for Ae. aegypti = 0.99 (0.75-1.34), P > 0.05; An. arabiensis = 0.96 (0.75-1.22), P > 0.05; and An. gambiae (s.s.) = 1.03 (0.79-1.35), P > 0.05]. CONCLUSIONS: Mosquitoes fed via this simple AF method had similar feeding success, fecundity and longevity. The method could potentially be used for laboratory colonization of mosquitoes, where DHF is unfeasible. If improved (e.g. minimizing temperature fluctuations), the approach could possibly also support studies where vectors are artificially infected with blood-borne pathogens.


Assuntos
Aedes/crescimento & desenvolvimento , Ração Animal , Anopheles/crescimento & desenvolvimento , Sangue , Entomologia/métodos , Membranas/química , Mosquitos Vetores/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Anopheles/fisiologia , Fertilidade , Longevidade , Politetrafluoretileno , Temperatura
4.
Malar J ; 14: 494, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26645085

RESUMO

BACKGROUND: The significance of malaria transmission occurring outdoors has risen even in areas where indoor interventions such as long-lasting insecticidal nets and indoor residual spraying are common. The actual contamination rates and effectiveness of recently developed outdoor mosquito control device, the mosquito landing box (MLB), on densities and daily survival of host-seeking laboratory Anopheles arabiensis, which readily bites humans outdoors was demonstrated. METHODS: Experiments were conducted in large semi-field systems (SFS) with human volunteers inside, to mimic natural ecosystems, and using MLBs baited with natural or synthetic human odours and carbon dioxide. The MLBs were dusted with 10% pyriproxyfen (PPF) or entomopathogenic fungi (Metarhizium anisopliae) spores to mark mosquitoes physically contacting the devices. Each night, 400 laboratory-reared An. arabiensis females were released in one SFS chamber with two MLBs, and another chamber without MLBs (control). Mosquitoes were individually recaptured while attempting to bite volunteers inside SFS or by aspiration from SFS walls. Mosquitoes from chambers with PPF-treated MLBs and respective controls were individually dipped in water-filled cups containing ten conspecific third-instar larvae, whose subsequent development was monitored. Mosquitoes recaptured from chambers with fungi-treated MLBs were observed for fungal hyphal growth on their cadavers. Separately, effects on daily survival were determined by exposing An. arabiensis in chambers having MLBs treated with 5% pirimiphos methyl compared to chambers without MLBs (control), after which the mosquitoes were recaptured and monitored individually until they died. RESULTS: Up to 63% (152/240) and 43% (92/210) of mosquitoes recaptured inside treatment chambers were contaminated with pyriproxyfen and M. anisopliae, respectively, compared to 8% (19/240) and 0% (0/164) in controls. The mean number of larvae emerging from cups in which adults from chambers with PPF-treated MLBs were dipped was significantly lower [0.75 (0.50-1.01)], than in controls [28.79 (28.32-29.26)], P < 0.001). Daily survival of mosquitoes exposed to 5% pirimiphos methyl was nearly two-fold lower than controls [hazard ratio (HR) = 1.748 (1.551-1.920), P < 0.001]. CONCLUSION: High contamination rates in exposed mosquitoes even in presence of humans, demonstrates potential of MLBs for controlling outdoor-biting malaria vectors, either by reducing their survival or directly killing host-seeking mosquitoes. The MLBs also have potential for dispensing filial infanticides, such as PPF, which mosquitoes can transmit to their aquatic habitats for mosquito population control.


Assuntos
Anopheles/crescimento & desenvolvimento , Insetos Vetores , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Adulto , Animais , Feminino , Humanos , Inseticidas/farmacologia , Masculino , Metarhizium/crescimento & desenvolvimento , Análise de Sobrevida
5.
PLoS Negl Trop Dis ; 7(8): e2356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951376

RESUMO

BACKGROUND: In recent years, evidence of Rift Valley fever (RVF) transmission during inter-epidemic periods in parts of Africa has increasingly been reported. The inter-epidemic transmissions generally pass undetected where there is no surveillance in the livestock or human populations. We studied the presence of and the determinants for inter-epidemic RVF transmission in an area experiencing annual flooding in southern Tanzania. METHODOLOGY: A cross-sectional sero-survey was conducted in randomly selected cattle, sheep and goats in the Kilombero river valley from May to August 2011, approximately four years after the 2006/07 RVF outbreak in Tanzania. The exposure status to RVF virus (RVFV) was determined using two commercial ELISA kits, detecting IgM and IgG antibodies in serum. Information about determinants was obtained through structured interviews with herd owners. FINDINGS: An overall seroprevalence of 11.3% (n = 1680) was recorded; 5.5% in animals born after the 2006/07 RVF outbreak and 22.7% in animals present during the outbreak. There was a linear increase in prevalence in the post-epidemic annual cohorts. Nine inhibition-ELISA positive samples were also positive for RVFV IgM antibodies indicating a recent infection. The spatial distribution of seroprevalence exhibited a few hotspots. The sex difference in seroprevalence in animals born after the previous epidemic was not significant (6.1% vs. 4.6% for females and males respectively, p = 0.158) whereas it was significant in animals present during the outbreak (26.0% vs. 7.8% for females and males respectively, p<0.001). Animals living >15 km from the flood plain were more likely to have antibodies than those living <5 km (OR 1.92; 95% CI 1.04-3.56). Species, breed, herd composition, grazing practices and altitude were not associated with seropositivity. CONCLUSION: These findings indicate post-epidemic transmission of RVFV in the study area. The linear increase in seroprevalence in the post-epidemic annual cohorts implies a constant exposure and presence of active foci transmission preceding the survey.


Assuntos
Anticorpos Antivirais/sangue , Transmissão de Doença Infecciosa , Epidemias , Gado , Febre do Vale de Rift/veterinária , Vírus da Febre do Vale do Rift/imunologia , Animais , Bovinos , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Cabras , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/transmissão , Estudos Soroepidemiológicos , Ovinos , Tanzânia/epidemiologia
6.
Parasit Vectors ; 6: 137, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642306

RESUMO

BACKGROUND: Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. METHODS: Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. RESULTS: There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P≤0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P≤0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30 pm, and between 4:30 and 6:00 am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). CONCLUSION: While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance.


Assuntos
Anopheles/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Culex/efeitos dos fármacos , Entomologia/instrumentação , Insetos Vetores/efeitos dos fármacos , Malvaceae/efeitos dos fármacos , Feromônios/farmacologia , Adulto , Animais , Anopheles/fisiologia , Culex/fisiologia , Equipamentos e Provisões , Experimentação Humana , Humanos , Insetos Vetores/fisiologia , Masculino , Malvaceae/fisiologia , Olfato/efeitos dos fármacos , Tanzânia
8.
Malariaworld J ; 3: 1, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-38854886

RESUMO

Background: Outdoor devices for luring and killing disease-transmitting mosquitoes have been proposed as potential complementary interventions alongside existing intra-domiciliary methods namely insecticide treated nets and house spraying with residual insecticides. To enhance effectiveness of such outdoor interventions, it is essential to optimally locate them in such a way that they target most of the outdoor mosquitoes. Methods: Using odour-baited lure and kill stations (OBS) as an example, we describe a map model derived from: 1) community participatory mapping conducted to identify mosquito breeding habitats, 2) entomological field studies conducted to estimate outdoor mosquito densities and to determine safe distances of the OBS from human dwellings, and 3) field surveys conducted to map households, roads, outdoor human aggregations and landmarks. The resulting data were combined in a Geographical Information Systems (GIS) environment and analysed to determine optimal locations for the OBS. Separately, a GIS-interpolated map produced by asking community members to rank different zones of the study area and show where they expected to find most mosquitoes, was visually compared to another map interpolated from the entomological survey of outdoor mosquito densities. Results: An easy-to-interpret suitability map showing optimal sites for placing OBS was produced, which clearly depicted areas least suitable and areas most suitable for locating the devices. Comparative visual interpretation of maps derived from interpolating the community knowledge and entomological data revealed major similarities between the two maps. Conclusion: Using distribution patterns of human and mosquito populations as well as characteristics of candidate outdoor interventions, it is possible to readily determine suitable areas for targeted positioning of the interventions, thus improve effectiveness. This study also highlights possibilities of relying on community knowledge to approximate areas where mosquitoes are most abundant and where to locate outdoor complementary interventions such as odour-baited lure and kill stations for controlling disease-transmitting mosquitoes.

9.
Parasit Vectors ; 3(1): 18, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20233423

RESUMO

Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS), can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 x 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P < 0.0001) and high quantity of conidia (eave baffles plus two cotton panels; HR = 2.32, P < 0.0001). We conclude that high infection rates of entomopathogenic fungi on wild malaria vectors and possibly significant disruption of malaria transmission can be achieved if the fungus is delivered using optimally located outdoor odor-baited stations.

10.
Parasit Vectors ; 3: 12, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20193085

RESUMO

BACKGROUND: To accelerate efforts towards control and possibly elimination of mosquito-borne diseases such as malaria and lymphatic filariasis, optimally located outdoor interventions could be used to complement existing intradomicilliary vector control methods such as house spraying with insecticides and insecticidal bednets. METHODS: We describe a new odor-baited station for trapping, contaminating and killing disease-transmitting mosquitoes. This device, named the 'Ifakara Odor-baited Station' (Ifakara OBS), is a 4 m3 hut-shaped canvas box with seven openings, two of which may be fitted with interception traps to catch exiting mosquitoes. It is baited with synthetic human odors and may be augmented with contaminants including toxic insecticides or biological agents. RESULTS: In field trials where panels of fabric were soaked in 1% pirimiphos-methyl solution and suspended inside the Ifakara OBS, at least 73.6% of Anopheles arabiensis, 78.7% of Culex and 60% of Mansonia mosquitoes sampled while exiting the OBS, died within 24 hours. When used simply as a trap and evaluated against two existing outdoor traps, Ifakara Tent trap and Mosquito Magnet-X(R), the OBS proved more efficacious than the Ifakara Tent trap in catching all mosquito species found (P < 0.001). Compared to the Mosquito Magnet-X(R), it was equally efficacious in catching An. arabiensis (P = 0.969), but was less efficacious against Culex (P < 0.001) or Mansonia species (P < 0.001). CONCLUSION: The Ifakara OBS is efficacious against disease-carrying mosquitoes including the malaria vector, An. arabiensis and Culicine vectors of filarial worms and arboviruses. It can be used simultaneously as a trap and as a contamination or killing station, meaning most mosquitoes which escape trapping would leave when already contaminated and die shortly afterwards. This technique has potential to complement current vector control methods, by targeting mosquitoes in places other than human dwellings, but its effectiveness in the field will require cheap, long-lasting and easy-to-use mosquito lures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...