Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 20: 823-829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655557

RESUMO

A skeletal rearrangement of a series of 6,8-dioxabicyclo[3.2.1]octan-4-ols has been developed using SOCl2 in the presence of pyridine. An oxygen migration from C5 to C4 was observed when the C4 alcohols were treated with SOCl2/pyridine, giving a 2-chloro-3,8-dioxabicyclo[3.2.1]octane ring-system via the chlorosulfite intermediate. Analogous allylic alcohols with endocyclic and exocyclic unsaturations underwent chlorination without rearrangement due to formation of allylic cations. The rearrangement was also demonstrated using Appel conditions, which gave similar results via the alkoxytriphenylphosphonium intermediate. Several reactions of the products were investigated to show the utility of the rearrangement.

2.
J Org Chem ; 89(2): 1315-1319, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38190610

RESUMO

The intramolecular enamine-Mizoroki-Heck reaction allows for the construction of nitrogen-containing heterocycles, although the related intermolecular version is less known. The reactions of enamines derived from Cyrene were investigated under Mizoroki-Heck conditions. An optimization study was used to identify that 1.5 mol % Pd(dba)2 with PCy3 in xylene at reflux temperature gave the highest yield with electron-rich aryl iodides. Arylation occurred predominantly at the C-N center of the enamine, while the diastereoselectivity was dependent on the nitrogen substitution in the enamine.

3.
Inorg Chem ; 62(47): 19208-19217, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37963068

RESUMO

Nanoconfinement in metal-organic framework (MOF) pores can lead to the isolation of unusual or reactive metal complexes. However, MOFs that support the stabilization and precise structural elucidation of metal complexes and small metal clusters are rare. Here, we report a thermally and chemically stable zirconium-based MOF (University of Adelaide Material-1001, UAM-1001) with a high density of free bis-pyrazolyl units that can confine mono- and dinuclear metal complexes. The precursor MOF, UAM-1000, has a high degree of structural flexibility, but post synthetic modification with a bracing linker, biphenyl-4,4'-dicarboxylic acid, partially rigidifies the MOF (UAM-1001). This allows "matrix isolation" and detailed structural elucidation of postsynthetically added dimeric complexes bound within a tetradentate binding site formed by two linkers. Dimeric species [Co2Cl4], [Cu2Cl4], [Ni2Cl3(H2O)2]Cl, and [Rh2(CO)3Cl2] were successfully isolated in UAM-1001 and characterized by single-crystal X-ray diffraction. Comparison of the UAM-1001 isolated species with similar complexes in the solid state reveals that UAM-1001 can significantly distort the structures and enforce notably shorter metal-metal distances. For example, MOF tethering allows isolation of a [Cu2Cl4] complex that rapidly reacts with water in the solid state. The stability, porosity, and modulated flexibility of UAM-1001 provide an ideal platform material for the isolation and study of new dimeric complexes and their reactivity.

4.
Chem Sci ; 14(35): 9409-9417, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712014

RESUMO

Mn(diimine)(CO)3X (X = halide) complexes are critical components of chromophores, photo- and electrocatalysts, and photoactive CO-releasing molecules (photoCORMs). While these entities have been incorporated into metal-organic frameworks (MOFs), a detailed understanding of the photochemical and chemical processes that occur in a permanently porous support is lacking. Here we site-isolate and study the photochemistry of a Mn(diimine)(CO)3Br moiety anchored within a permanently porous MOF support, allowing for not only the photo-liberation of CO from the metal but also its escape from the MOF crystals. In addition, the high crystallinity and structural flexibility of the MOF allows crystallographic snapshots of the photolysis products to be obtained. We report these photo-crystallographic studies in the presence of coordinating solvents, THF and acetonitrile, showing the changing coordination environment of the Mn species as CO loss proceeds. Using time resolved experiments, we report complementary spectroscopic studies of the photolysis chemistry and characterize the final photolysis product as a possible Mn(ii) entity. These studies inform the chemistry that occurs in MOF-based photoCORMs and where these moieties are employed as catalysts.

5.
ACS Chem Biol ; 18(9): 1985-1992, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651626

RESUMO

We previously reported potent ligands and inhibitors of Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS), a promising target for antituberculosis drug development (Schumann et al., ACS Chem Biol. 2021, 16, 2339-2347); here, the unconventional origin of the fragment compound they were derived from is described for the first time. Compound 1 (9b-hydroxy-6b,7,8,9,9a,9b-hexahydrocyclopenta[3,4]cyclobuta[1,2-c]chromen-6(6aH)-one), identified by an in silico fragment screen, was subsequently shown by surface plasmon resonance to have dose-responsive binding (KD = 0.6 mM). Clear electron density was revealed in the DAPA substrate binding pocket when 1 was soaked into MtDTBS crystals, but the density was inconsistent with the structure of 1. Here, we show that the lactone of 1 hydrolyzes to a carboxylic acid (2) under basic conditions, including those of the crystallography soak, with a subsequent ring opening of the component cyclobutane ring forming a cyclopentylacetic acid (3). Crystals soaked directly with authentic 3 produced an electron density that matched that of crystals soaked with presumed 1, confirming the identity of the bound ligand. The synthetic utility of fortuitously formed 3 enabled the subsequent compound development of nanomolar inhibitors. Our findings represent an example of chemical modification within drug discovery assays and demonstrate the value of high-resolution structural data in the fragment hit validation process.


Assuntos
Carbono-Nitrogênio Ligases , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Bioensaio
6.
Org Lett ; 25(34): 6317-6321, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606687

RESUMO

Hyperireflexolides A and B were synthesized in six steps via the dearomatization and fragmentation of a simple acylphloroglucinol starting material. The dearomatized acylphloroglucinol undergoes a sequence of oxidative radical cyclization, retro-Dieckmann fragmentation, stereodivergent intramolecular carbonyl-ene reactions, and final α-hydroxy-ß-diketone rearrangements to give the target natural products. This sequence is based on a biosynthetic proposal that claims the hyperireflexolides as highly rearranged polycyclic polyprenylated acylphloroglucinols (PPAPs), which is supported by the structural revision of hyperireflexolide B.


Assuntos
Produtos Biológicos , Ciclização , Cetonas
7.
J Org Chem ; 88(16): 11444-11449, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552803

RESUMO

Bifunctional thiourea/amine organocatalysts have been used for the desymmetrization of meso-endoperoxides using the Kornblum-DeLaMare reaction, giving 4-hydroxyketones in 78-98% yields with ≤98:2 enantioselectivity. The influence of the catalyst structure, solvent, and temperature was examined. The most promising catalyst was applied to the kinetic resolution of racemic endoperoxides to give enantioenriched materials (≤99:1 er).

8.
Chem Sci ; 14(4): 950-954, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755725

RESUMO

A concise synthesis of a stereochemically complex meroterpenoid, peshawaraquinone, via the unsymmetrical dimerization of its achiral precursor, dehydro-α-lapachone, is reported. Enabled by reversible oxa-6π-electrocyclizations of 2H-pyran intermediates, the base-catalyzed dimerization sets up an intramolecular (3 + 2) cycloaddition, with the formation of six stereocenters during the cascade. Combining the generation and in situ dimerization of dehydro-α-lapachone allows a one-step total synthesis of peshawaraquinone from lawsone and prenal.

9.
J Am Chem Soc ; 144(50): 22844-22849, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36508174

RESUMO

Inspired by a new biosynthetic hypothesis, we report a biomimetic total synthesis of atrachinenins A and B that explains their racemic nature. The synthesis exploits an intermolecular Diels-Alder reaction between a quinone meroterpenoid and E-ß-ocimene, followed by intramolecular (3 + 2) cycloaddition and a late-stage aerobic oxidation. Divergent transformations of a simple model system gave several complex polycyclic scaffolds, while also suggesting a structure revision for atrachinenin C.


Assuntos
Biomimética , Quinonas , Oxirredução , Ciclização , Reação de Cicloadição , Estereoisomerismo
10.
Angew Chem Int Ed Engl ; 61(19): e202200420, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225410

RESUMO

The field of biomimetic synthesis seeks to apply biosynthetic hypotheses to the efficient construction of complex natural products. This approach can also guide the revision of incorrectly assigned structures. Herein, we describe the evolution of a concise total synthesis and structural reassignment of hyperelodione D, a tetracyclic meroterpenoid derived from a Hypericum plant, alongside some biogenetically related natural products, erectones A and B. The key step in the synthesis of hyperelodione D forms six stereocentres and three rings in a bioinspired cascade reaction that features an intermolecular Diels-Alder reaction, an intramolecular Prins reaction and a terminating cycloetherification.


Assuntos
Produtos Biológicos , Hypericum , Produtos Biológicos/química , Biomimética , Reação de Cicloadição
11.
Chem Commun (Camb) ; 58(7): 957-960, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34951415

RESUMO

Metal-organic layers (MOLs) are of great interest in heterogeneous catalysis, particularly materials that can accommodate extraneous metal centres. Here, we demonstrate a two-step preorganisation/delamination synthetic strategy using CuI as a template to prepare Zr-based MOLs with accessible 'syn' bis-pyrazolyl chelating sites (named UAM-2·ns) that are poised for quantitative post-synthetic metalation with late transition metals.

12.
Chem Sci ; 12(44): 14893-14900, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820105

RESUMO

Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to 'unlock' the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

13.
J Inorg Biochem ; 225: 111598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517168

RESUMO

Silver is commonly included in a range of household and medical items to provide bactericidal action. Despite this, the chemical fate of the metal in both mammalian and bacterial systems remains poorly understood. Here, we applied a metallomics approach using X-ray absorption spectroscopy (XAS) and size-exclusion chromatography hyphenated with inductively coupled plasma mass spectrometry (SEC-ICP-MS) to advance our understanding of the biochemical fate of silver ions in bacterial culture and cells, and the chemistry associated with these interactions. When silver ions were added to lysogeny broth, silver was exclusively associated with moderately-sized species (~30 kDa) and bound by thiolate ligands. In two representative bacterial pathogens cultured in lysogeny broth including sub-lethal concentrations of ionic silver, silver was found in cells to be predominantly coordinated by thiolate species. The silver biomacromolecule-binding profile in Staphylococcus aureus and Escherichia coli was complex, with silver bound by a range of species spanning from 20 kDa to >1220 kDa. In bacterial cells, silver was nonuniformly colocalised with copper-bound proteins, suggesting that cellular copper processing may, in part, confuse silver for nutrient copper. Notably, in the treated cells, silver was not detected bound to low molecular weight compounds such as glutathione or bacillithiol.


Assuntos
Antibacterianos/metabolismo , Escherichia coli/metabolismo , Prata/metabolismo , Staphylococcus aureus/metabolismo , Antibacterianos/química , Cromatografia em Gel , Espectrometria de Massas , Metabolômica , Prata/química , Enxofre/química , Espectroscopia por Absorção de Raios X
14.
Inorg Chem ; 60(16): 11775-11783, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34160208

RESUMO

Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.

15.
ACS Appl Mater Interfaces ; 13(44): 51867-51875, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33957755

RESUMO

The biomimetic mineralization of zeolitic imidazolate framework-8 (ZIF-8) has been reported as a strategy for enzyme immobilization, enabling the heterogenization and protection of biomacromolecules. Here, we report the preparation of different Candida antarctica lipase B biocomposites (CALB@ZIF-8) formed by altering the concentrations of Zn2+ and 2-methylimidazole (2-mIM). The influence of synthetic conditions on the catalytic activity of the lipase CALB was examined by hydrolysis and transesterification assays in aqueous and organic media, respectively. We demonstrated that for both reactions, activity was retained for the biocomposites formed at low Zn2+/2-mIM ratios but notably almost entirely lost when the ligand concentration used to form the biocomposites was increased. Additionally, phosphate buffer could regenerate the activity of larger particles by degrading the crystal surfaces and releasing encapsulated CALB into solution. Transesterification reactions using CALB@ZIF-8 biocomposites were undertaken in 100% hexane, giving rise to enhanced CALB activity relative to the free enzyme. These observations highlight the fundamental importance of synthetic protocols and operating parameters for developing enzyme@MOF biocomposites with improved activity in challenging conditions.

16.
Chem Rev ; 121(3): 1077-1129, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33439632

RESUMO

Because of their efficiency, selectivity, and environmental sustainability, there are significant opportunities for enzymes in chemical synthesis and biotechnology. However, as the three-dimensional active structure of enzymes is predominantly maintained by weaker noncovalent interactions, thermal, pH, and chemical stressors can modify or eliminate activity. Metal-organic frameworks (MOFs), which are extended porous network materials assembled by a bottom-up building block approach from metal-based nodes and organic linkers, can be used to afford protection to enzymes. The self-assembled structures of MOFs can be used to encase an enzyme in a process called encapsulation when the MOF is synthesized in the presence of the biomolecule. Alternatively, enzymes can be infiltrated into mesoporous MOF structures or surface bound via covalent or noncovalent processes. Integration of MOF materials and enzymes in this way affords protection and allows the enzyme to maintain activity in challenge conditions (e.g., denaturing agents, elevated temperature, non-native pH, and organic solvents). In addition to forming simple enzyme/MOF biocomposites, other materials can be introduced to the composites to improve recovery or facilitate advanced applications in sensing and fuel cell technology. This review canvasses enzyme protection via encapsulation, pore infiltration, and surface adsorption and summarizes strategies to form multicomponent composites. Also, given that enzyme/MOF biocomposites straddle materials chemistry and enzymology, this review provides an assessment of the characterization methodologies used for MOF-immobilized enzymes and identifies some key parameters to facilitate development of the field.


Assuntos
Materiais Biocompatíveis/metabolismo , Enzimas/metabolismo , Estruturas Metalorgânicas/metabolismo , Materiais Biocompatíveis/química , Enzimas/química , Estruturas Metalorgânicas/química
17.
ACS Appl Bio Mater ; 4(8): 6125-6136, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006903

RESUMO

Antibacterial treatment strategies using functional nanomaterials, such as photodynamic therapy, are urgently required to combat persistent Staphylococcus aureus small colony variant (SCV) bacteria. Using a stepwise approach involving thermolysis to form ß-NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) and surface ligand exchange with cetyltrimethylammonium bromide (CTAB), followed by zeolite imidazolate framework-8 (ZIF-8) coating and conversion to zinc oxide (ZnO), ß-NaYF4:Yb/Tm@ZnO nanoparticles were synthesized. The direct synthesis of ß-NaYF4:Yb/Tm@ZIF-8 UCNPs proved problematic due to the hydrophobic nature of the as-synthesized material, which was shown by zeta potential measurements using dynamic light scattering (DLS). To facilitate deposition of a ZnO coating, the zeta potentials of (i) as-synthesized UCNPs, (ii) calcined UCNPs, (iii) polyvinylpyrrolidone (PVP), and (iv) CTAB-coated UCNPs were measured, which revealed the CTAB-coated UCNPs to be the most hydrophilic and the better-dispersed form in water. ß-NaYF4:Yb/Tm@ZIF-8 composites formed using the CTAB-coated UCNPs were then converted into ß-NaYF4:Yb/Tm@ZnO nanoparticles by calcination under carefully controlled conditions. Photoluminescence analysis confirmed the upconversion process for the UCNP core, which allows the ß-NaYF4:Yb/Tm@ZnO nanoparticles to photogenerate reactive oxygen species (ROS) when activated by near-infrared (NIR) radiation. The NIR-activated UCNPs@ZnO nanoparticles demonstrated potent efficacy against both Staphylococcus aureus (WCH-SK2) and its associated SCV form (0.67 and 0.76 log colony forming unit (CFU) reduction, respectively), which was attributed to ROS generated from the NIR activated ß-NaYF4:Yb/Tm@ZnO nanoparticles.


Assuntos
Nanopartículas , Fotoquimioterapia , Zeolitas , Óxido de Zinco , Antibacterianos/farmacologia , Cetrimônio , Nanopartículas/uso terapêutico , Espécies Reativas de Oxigênio , Staphylococcus aureus , Óxido de Zinco/farmacologia
18.
Faraday Discuss ; 225(0): 84-99, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104138

RESUMO

Obtaining structural information for highly reactive metal-based species can provide valuable insight into important chemical transformations or catalytic processes. Trapping these metal-based species within the cavities of porous crystalline hosts, such as metal-organic frameworks (MOFs), can stabilise them, allowing detailed structural elucidation by single crystal X-ray diffraction. Previously, we have used a bespoke flexible MOF, [Mn3L2L'] (MnMOF-1, where L = bis-(4-carboxyphenyl-3,5-dimethylpyrazolyl)methane and L = L', but L' has a vacant N,N'-chelation site), which has a chelating site capable of post-synthetically binding metal ions, to study organometallic transformations and fundamental isomerisation processes. This manuscript will report the underlying conformational flexibility of the framework, demonstrate the solvent dependency of post-synthetic metalation, and show that the structural flexibility of the linker site and framework are critical to controlling and achieving high levels of metal loading (and therefore site occupancy) during chemical transformations. From these results, a set of design principles for linker-based "matrix isolation" and structure determination in MOFs are derived.

19.
Chem Commun (Camb) ; 56(97): 15313-15316, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33211037

RESUMO

The mutable structures of metal-organic frameworks (MOFs) allow their use as novel supports for transition metal catalysts. Herein we prepare an iridium bis(ethylene) catalyst bound to the neutral N-donors of a MOF structure and show that the compound is a stable gas phase ethylene hydrogenation catalyst. The data illustrate the need to carefully consider the inner sphere (support) and outer sphere (anion) chemistry.

20.
Molecules ; 25(19)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020442

RESUMO

Silver(I)-based coordination polymers or metal-organic frameworks (MOFs) display useful antibacterial properties, whereby distinct materials with different bonding can afford control over the release of silver(I) ions. Such silver(I) materials are comprised of discrete secondary building units (SBUs), and typically formed with ligands possessing only soft or borderline donors. We postulated that a linker with four potential donor groups, comprising carboxylate and soft thioether donors, 2,5-bis (allylsulfanyl) benzene dicarboxylic acid (ASBDC), could be used to form stable, highly connected coordination polymers with silver(I). Here, we describe the synthesis of a new material, (Ag2(ASBDC)), which possesses a rod-like metal node-based 3D honeycomb structure, strongly -stacked linkers, and steric bulk to protect the node. Due to the rod-like metal node and the blocking afforded by the ordered allyl groups, the material displays notable thermal and moisture stability. An interesting structural feature of (Ag2(ASBDC)) is contiguous Ag-S bonding, essentially a helical silver chalcogenide wire, which extends through the structure. These interesting structural features, coupled with the relative ease by which MOFs made with linear dicarboxylate linkers can be reticulated, suggests this may be a structure type worthy of further investigation.


Assuntos
Antibacterianos/química , Complexos de Coordenação , Ácidos Dicarboxílicos/química , Polímeros , Prata/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Polímeros/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...