Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 12(8): 1141-50, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17710451

RESUMO

The substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)], [Pt(bpma)(H(2)O)](2+) and [Pt(gly-met-S,N,N)(H(2)O)](+) [where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycylmethionine] with L-methionine, glutathione and guanosine 5'-monophosphate (5'-GMP) were studied in aqueous solutions in 0.10 M NaClO(4) under pseudo-first-order conditions as a function of concentration and temperature using UV-vis spectrophotometry. The reactions of the chloro complexes were followed in the presence of 10 mM NaCl and at pH approximately 5, whereas the reactions of the aqua complexes were studied at pH 2.5. The [PtCl(bpma)]+ complex is more reactive towards the chosen nucleophiles than [PtCl(gly-met-S,N,N)]. Also, the aqua complexes are more reactive than the corresponding chloro complexes. The activation parameters for all the reactions studied suggest an associative substitution mechanism. The reactions of [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)] with 5'-GMP were studied by using (1)H NMR spectroscopy at 298 K. The pK (a) value of the [Pt(gly-met-S,N,N)(H(2)O)]+ complex is 5.95. Density functional theory calculations (B3LYP/LANL2DZp) show that in all cases guanine coordination to the L(3)Pt fragment (L(3) is terpyridine, bpma, diethylenetriamine, gly-met-S,N,N) is much more favorable than the thioether-coordinated form. The calculations collectively support the experimentally observed substitution of thioethers from Pt(II) complexes by N7-GMP. This study throws more light on the mechanistic behavior of platinum antitumor complexes.


Assuntos
Glutationa/química , Guanosina Monofosfato/química , Metionina/química , Compostos Organoplatínicos/química , Cinética , Água/química
2.
Inorg Chem ; 46(6): 2094-104, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-17311374

RESUMO

The reactions of the two complexes BBR3464 [{trans-PtCl(NH3)2}2{mu-trans-Pt(NH3)2(NH2(CH2)6NH2)2}](4+) and BBR3610 [{trans-PtCl(NH3)2}2{mu-C2H4(NH2(CH2)6NH2)2}](4+) and the corresponding diaqua complexes with the nucleophiles thiourea (tu) and l-methionine (l-Met), were investigated under pseudo-first-order conditions as a function of concentration and temperature, using UV-vis spectrophotometric and stopped-flow techniques. 1H NMR spectroscopy was used to follow the stepwise substitution of the chloro ligands by guanosine-5'-monophosphate under second-order conditions. For the sulfur donor containing nucleophiles (tu and l-Met), a second reaction step, the displacement of the labilized amine chain linker, as a result of the strong trans-effect of tu and l-Met, was found. The activation parameters for all reactions studied suggest an associative substitution mechanism. The displacement of the chain linker by S-donor nucleophiles illustrates the limit of application of polynuclear complexes with monodentate aliphatic amine bridges and primary ammines, in agreement with previous studies reported in the literature.


Assuntos
Antineoplásicos/farmacocinética , Compostos Organoplatínicos/farmacocinética , Antineoplásicos/química , Biotransformação , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Organoplatínicos/química , Espectrofotometria Ultravioleta
3.
J Biol Inorg Chem ; 12(4): 461-75, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17245597

RESUMO

A set of three oxaliplatin derivatives containing 1,2-trans-R,R-diaminocyclohexane (dach) as a spectator ligand and different chelating leaving groups X-Y, viz., [Pt(dach)(O,O-cyclobutane-1,1-dicarboxylate)], or Pt(dach)(CBDCA), [Pt(dach)(N,O-glycine)]+, or Pt(dach)(gly), and [Pt(dach)(N,S-methionine)]+, or Pt(dach)(L-Met), where L-Met is L-methionine, were synthesized and the crystal structure of Pt(dach)(gly) was determined by X-ray diffraction. The effect of the leaving group on the reactivity of the resulting Pt(II) complexes was studied for the nucleophiles thiourea, glutathione (GSH) and L-Met under pseudo-first-order conditions as a function of nucleophile concentration and temperature, using UV-vis spectrophotometric techniques. 1H NMR spectroscopy was used to follow the substitution of the leaving group by guanosine 5'-monophosphate (5'-GMP2-) under second-order conditions. The rate constants indicate for all reactions a direct substitution of the X-Y chelate by the selected nucleophiles, thereby showing that the nature of the chelate, viz., O-O (CBDCA2-), N-O (glycine) or S-N (L-Met), respectively, plays an important role in the kinetic and mechanistic behavior of the Pt(II) complex. The k1 values for the reaction with thiourea, L-Met, GSH and 5'-GMP2- were found to be as follows (10(3) k1, 37.5 degrees C, M(-1) s(-1)): Pt(dach)(CBDCA) 61 +/- 2, 21.6 +/- 0.1, 23 +/- 1, 0.352 +/- 0.002; Pt(dach)(gly) 82 +/- 3, 6.2 +/- 0.2, 37 +/- 1, 1.77 +/- 0.01; Pt(dach)(L-Met) (thiourea, GSH) 62 +/- 2, 24 +/- 1. The activation parameters for all reactions studied suggest an associative substitution mechanism.


Assuntos
Aminoácidos/química , Quelantes/química , Cicloexilaminas/química , Compostos de Platina/química , Quelantes/farmacologia , Cristalografia por Raios X , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Guanosina Monofosfato/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos de Platina/farmacologia , Tioureia/antagonistas & inibidores , Tioureia/metabolismo
4.
Inorg Chem ; 45(7): 2948-59, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16562950

RESUMO

The effect of different N-N spectator ligands on the reactivity of platinum(II) complexes was investigated by studying the water lability of [Pt(diaminocyclohexane)(H2O)2]2+ (Pt(dach)), [Pt(ethylenediamine)(H2O)2]2+ (Pt(en)), [Pt(aminomethylpyridine)(H2O)2]2+ (Pt(amp)), and [Pt(N,N'-bipyridine)(H2O)2]2+ (Pt(bpy)). Some of the selected N-N chelates form part of the coordination sphere of Pt(II) drugs in clinical use, as in Pt(dach) (oxaliplatin), or are models, regarding the nature of the amines, with higher stability in terms of substitution and hydrolysis of the diamine moiety, as in Pt(en) (cisplatin) and Pt(amp) (AMD473). The effect of pi-acceptors on the reactivity was investigated by introducing one (Pt(amp)) or two pyridine rings (Pt(bpy)) in the system. The pK(a) values for the two water molecules (viz., Pt(dach) (pK(a1) = 6.01, pK(a2) = 7.69), Pt(en) (pK(a1) = 5.97, pK(a2) = 7.47), Pt(amp) (pK(a1) = 5.82, pK(a2) = 6.83), Pt(bpy) (pK(a1) = 4.80, pK(a2) = 6.32) show a decrease in the order Pt(dach) > Pt(en) > Pt(amp) > Pt(bpy). The substitution of both coordinated water molecules by a series of nucleophiles (viz., thiourea (tu), L-methionine (L-Met), and guanosine-5'-monophosphate (5'GMP-) was investigated under pseudo-first-order conditions as a function of concentration, temperature, and pressure using UV-vis spectrophotometric and stopped-flow techniques and was found to occur in two subsequent reaction steps. The following k1 values for Pt(dach), Pt(en), Pt(amp), and Pt(bpy) were found: tu (25 degrees C, M(-1) s(-1)) 21 +/- 1, 34.0 +/- 0.4, 233 +/- 5, 5081 +/- 275; L-Met (25 degrees C) 0.85 +/- 0.01, 0.70 +/- 0.03, 2.15 +/- 0.05, 21.8 +/- 0.6; 5'GMP- (40 degrees C) 5.8 +/- 0.2, 3.9 +/- 0.1, 12.5 +/- 0.5, 24.4 +/- 0.3. The results for k2 for Pt(dach), Pt(en), Pt(amp), and Pt(bpy) are as follows: tu (25 degrees C, M(-1) s(-1)) 11.5 +/- 0.5, 10.2 +/- 0.2, 38 +/- 1, 1119 +/- 22; L-Met (25 degrees C, s(-1)) 2.5 +/- 0.1, 2.0 +/- 0.2, 1.2 +/- 0.3, 290 +/- 4; 5'GMP- (40 degrees C, M(-1) s(-1)) 0.21 +/- 0.02, 0.38 +/- 0.02, 0.97 +/- 0.02, 24 +/- 1. The activation parameters for all reactions suggest an associative substitution mechanism. The pK(a) values and substitution rates of the complexes studied can be tuned through the nature of the N-N chelate, which is important in the development of new active compounds for cancer therapy.


Assuntos
Guanosina Monofosfato/química , Metionina/química , Compostos Organoplatínicos/química , Termodinâmica , Tioureia/química , Concentração de Íons de Hidrogênio , Hidrólise , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/métodos , Temperatura , Água/química
5.
J Am Chem Soc ; 124(38): 11404-16, 2002 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-12236755

RESUMO

Pincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir. Although a slightly higher energy barrier (DeltaE(+ +)) is computed for the D pathway, the calculated free-energy barrier (DeltaG(+ +)) for the D pathway is significantly lower than that of the A pathway. Under standard thermodynamic conditions (STP), C-H addition via the D pathway has DeltaG(o)(+ +) = 36.3 kcal/mol for CyH (35.1 kcal/mol for n-PrH). However, acceptorless dehydrogenation of alkanes is thermodynamically impossible at STP. At conditions under which acceptorless dehydrogenation is thermodynamically possible (for example, T = 150 degrees C and P(H)2 = 1.0 x 10(-7) atm), DeltaG(+ +) for C-H addition to ((Me)PCP)Ir (plus a molecule of free H(2)) is very low (17.5 kcal/mol for CyH, 16.7 kcal/mol for n-PrH). Under these conditions, the rate-determining step for the D pathway is the loss of H(2) from ((Me)PCP)IrH(2) with DeltaG(D)(+ +) approximately DeltaH(D)(+ +) = 27.2 kcal/mol. For CyH, the calculated DeltaG(o)(+ +) for C-H addition to ((Me)PCP)IrH(2) on the A pathway is 35.2 kcal/mol (32.7 kcal/mol for n-PrH). At catalytic conditions, the calculated free energies of C-H addition are 31.3 and 33.7 kcal/mol for CyH and n-PrH addition, respectively. Elimination of H(2) from the resulting "seven-coordinate" Ir-species must proceed with an activation enthalpy at least as large as the enthalpy change of the elimination step itself (DeltaH approximately 11-13 kcal/mol), and with a small entropy of activation. The free energy of activation for H(2) elimination (DeltaG(A)(+ +)) is hence found to be greater than ca. 36 kcal/mol for both CyH and n-PrH under catalytic conditions. The overall free-energy barrier of the A pathway is calculated to be higher than that of the D pathway by ca. 9 kcal/mol. Reversible C-H(D) addition to ((R)PCP)IrH(2) is predicted to lead to H/D exchange, because the barriers for hydride scrambling are extremely low in the "seven-coordinate" polyhydrides. In agreement with calculation, H/D exchange is observed experimentally for several deuteriohydrocarbons with the following order of rates: C(6)D(6) > mesitylene-d(12) > n-decane-d(22) >> cyclohexane-d(12). Because H/D exchange in cyclohexane-d(12) solution is not observed even after 1 week at 180 degrees C, we estimate that the experimental barrier to cyclohexane C-D addition is greater than 36.4 kcal/mol. This value is considerably greater than the experimental barrier for the full catalytic dehydrogenation cycle for cycloalkanes (ca. 31 kcal/mol). Thus, the experimental evidence, in agreement with calculation, strongly indicates that the A pathway is not kinetically viable as a segment of the "acceptorless" dehydrogenation cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...