Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 56: 102447, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36027677

RESUMO

The regulation of mitochondria function and health is a central node in tissue maintenance, ageing as well as the pathogenesis of various diseases. However, the maintenance of an active mitochondrial functional state and its quality control mechanisms remain incompletely understood. By studying mice with a mitochondria-targeted reporter that shifts its fluorescence from "green" to "red" with time (MitoTimer), we found MitoTimer fluorescence spectrum was heavily dependent on the oxidative metabolic state in the skeletal muscle fibers. The mitoproteolytic activity was enhanced in an energy dependent manner, and accelerated the turnover of MitoTimer protein and respiratory chain substrate, responsible for a green predominant MitoTimer fluorescence spectrum under the oxidative conditions. PGC1α, as well as anti-ageing regents promoted enhanced mitoproteolysis. In addition, cells with the green predominant mitochondria exhibited lower levels of MitoSox and protein carbonylation, indicating a favorable redox state. Thus, we identified MitoTimer as a probe for mitoproteolytic activity in vivo and found a heightened control of mitoproteolysis in the oxidative metabolic state, providing a framework for understanding the maintenance of active oxidative metabolism while limiting oxidative damages.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Animais , Fluorescência , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
2.
J Cell Mol Med ; 25(16): 7840-7854, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227742

RESUMO

Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.


Assuntos
Tecido Adiposo/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Hexoquinase/metabolismo , Homeostase , Músculo Esquelético/fisiologia , Fosfofrutoquinase-2/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Hexoquinase/genética , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...