Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 45(11): 5197-5207, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30203474

RESUMO

PURPOSE: The purpose of this study was to enhance the deformation range of demons-based deformable image registration (DIR) for large respiration-induced organ motion in the reconstruction of time-resolved four-dimensional magnetic resonance imaging (TR-4DMRI) for multi-breath motion simulation. METHODS: A demons-based DIR algorithm was modified to enhance the deformation range for TR-4DMRI reconstruction using the super-resolution approach. A pseudo demons force was introduced to accelerate the coarse deformation in a multi-resolution (n = 3) DIR approach. The intensity gradient of a voxel was applied to its neighboring (5 × 5 × 5) voxels with a weight of Gaussian probability profile (σ = 1 voxel) to extend the demons force, especially on those voxels that have little intensity gradience but high-intensity difference. A digital 4DMRI phantom with 3-8 cm diaphragmatic motions was used for DIR comparison. Six volunteers were scanned with two high-resolution (highR: 2 × 2 × 2 mm3 ) breath-hold (BH) 3DMR images at full inhalation (BHI) and full exhalation (BHE) and low-resolution (lowR: 5 × 5 × 5 mm3 ) free-breathing (FB) 3DMR cine images (2 Hz) under an IRB-approved protocol. A cross-consistency check (CCC) (BHI→FB←BHE), with voxel intensity correlation (VIC) and inverse consistency error (ICE), was introduced for cross-verification of TR-4DMRI reconstruction. RESULTS: Using the digital phantom, the maximum deformable magnitude is doubled using the modified DIR from 3 to 6 cm at the diaphragm. In six human subjects, the first 15-iteration DIR using the pseudo force deforms 200 ± 150% more than the original force, and succeeds in all 12 cases, whereas the original demons-based DIR failed in 67% of tested cases. Using the pseudo force, high VIC (>0.9) and small ICE (1.6 ± 0.6 mm) values are observed for DIR of BHI&BHE, BHI→FB, and BHE→FB. The CCC identifies four questionable cases, in which two cases need further DIR refinement, without missing true negative. CONCLUSIONS: The introduction of a pseudo demons force enhances the largest deformation magnitude up to 6 cm. The cross-consistency check ensures the quality of TR-4DMRI reconstruction. Further investigation is ongoing to fully characterize TR-4DMRI for potential multi-breathing-cycle radiotherapy simulation.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas
2.
Int J Radiat Oncol Biol Phys ; 98(2): 454-462, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463165

RESUMO

PURPOSE: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. METHODS AND MATERIALS: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board-approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. RESULTS: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were -0.2 ± 0.5 mm (phantom) and -0.2 ± 1.9 mm (diaphragms). CONCLUSION: Super-resolution TR-4DMRI has been reconstructed with adequate temporal (2 Hz) and spatial (2 × 2 × 2 mm3) resolutions. Further TR-4DMRI characterization and improvement are necessary before clinical applications. Multi-breathing cycles can be examined, providing patient-specific breathing irregularities and motion statistics for future 4D radiation therapy.


Assuntos
Suspensão da Respiração , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Movimento , Respiração , Artefatos , Análise de Fourier , Humanos , Imageamento Tridimensional/normas , Imagem Cinética por Ressonância Magnética/normas , Movimento (Física) , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...