Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(11): 2667-2675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704894

RESUMO

PURPOSE: The brain is protected from circulating metabolites and xenobiotics by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Previous studies report that P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) are expressed apically or subapically at the blood-CSF barrier (BCSFB), implying a paradoxical function to mediate blood-to-CSF transport of xenobiotics. As evidence of P-gp and Bcrp activity at the BCSFB is limited, the goal of this study is to investigate functional activity of P-gp and Bcrp at the murine BCSFB using a live tissue imaging approach. METHODS: The choroid plexuses (CP) forming the BCSFB were freshly isolated from mouse brain ventricles and incubated with fluorescent probes calcein-AM and BODIPY FL-Prazosin. Using quantitative fluorescence microscopy, the functional contributions of Bcrp and P-gp were examined using inhibitors and mice with targeted deletion of the Abcb1a/b or Abcg2 gene. RESULTS: Apical transport of calcein-AM in choroid plexus epithelial (CPE) cells is sensitive to inhibition by elacridar and Ko143 but is unaffected by P-gp deletion. In wild-type mice, elacridar increased CPE accumulation of BODIPY FL-Prazosin by 220% whereas deletion of Bcrp increased BODIPY FL-Prazosin accumulation by 43%. There was no change in Mdr1a/1b mRNA expression in CP tissues from the Bcrp-/- mice. CONCLUSIONS: This study demonstrated functional activity of Bcrp at the BCSFB apical membrane and provided evidence supporting an additional contribution by P-gp. These findings contribute to the understanding of transport mechanisms that regulate CSF drug concentrations, which may benefit future predictions of CNS drug disposition, efficacy, and toxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Animais , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas de Neoplasias/metabolismo , Prazosina
2.
Mol Pharmacol ; 104(6): 255-265, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37652713

RESUMO

The blood-cerebrospinal fluid barrier (BCSFB), formed by the choroid plexus epithelial (CPE) cells, plays an active role in removing drugs and metabolic wastes from the brain. Recent functional studies in isolated mouse choroid plexus (CP) tissues suggested the presence of organic anion transporting polypeptides (OATPs, encoded by SLCOs) at the apical membrane of BCSFB, which may clear large organic anions from the cerebrospinal fluid (CSF). However, the specific OATP isoform involved is unclear. Using quantitative fluorescence imaging, we showed that the fluorescent anions sulforhodamine 101 (SR101), fluorescein methotrexate (FL-MTX), and 8-fluorescein-cAMP (fluo-cAMP) are actively transported from the CSF to the subepithelial space in CP tissues isolated from wild-type mice. In contrast, transepithelial transport of these compounds across the CPE cells was abolished in Oatp1a/1b-/- mice due to impaired apical uptake. Using transporter-expressing cell lines, SR101, FL-MTX, and fluo-cAMP were additionally shown to be transported by mouse OATP1A5 and its human counterpart OATP1A2. Kinetic analysis showed that estrone-3-sulfate and SR101 are transported by OATP1A2 and OATP1A5 with similar Michaelis-Menten constants (Km). Immunofluorescence staining further revealed the presence of OATP1A2 protein in human CP tissues. Together, our results suggest that large organic anions in the CSF are actively transported into CPE cells by apical OATP1A2 (OATP1A5 in mice), then subsequently effluxed into the blood by basolateral multidrug resistance-associated proteins (MRPs). As OATP1A2 transports a wide array of endogenous compounds and xenobiotics, the presence of this transporter at the BCSFB may imply a novel clearance route for drugs and neurohormones from the CSF. SIGNIFICANCE STATEMENT: Drug transporters at the blood-cerebrospinal fluid (CSF) barrier play an important but understudied role in brain drug disposition. This study revealed a functional contribution of rodent organic anion transporting polypeptide (OATP) 1A5 towards the CSF clearance of organic anions and suggested a similar role for OATP1A2 in humans. Delineating the molecular mechanisms governing CSF organic anion clearance may help to improve the prediction of central nervous system (CNS) pharmacokinetics and identify drug candidates with favorable CNS pharmacokinetic properties.


Assuntos
Barreira Hematoencefálica , Transportadores de Ânions Orgânicos , Camundongos , Humanos , Animais , Cinética , Barreira Hematoencefálica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transporte Biológico , Fluoresceína/metabolismo , Ânions/metabolismo
3.
Pharm Res ; 39(7): 1469-1480, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411508

RESUMO

PURPOSE: Transporters at the blood-cerebrospinal fluid (CSF) barrier (BCSFB) play active roles in removing drugs and toxins from the CSF. The goal of this study is to develop a fluorescence microscopy approach to quantitatively study the transepithelial transport processes at the murine BCSFB in real time. METHODS: Choroid plexus (CP) tissues were isolated from mouse lateral ventricles and incubated with anionic (fluorescein-methotrexate, 8-fluorescein-cAMP) or cationic (IDT307) fluorescent probes. The CSF-to-blood transport was imaged and quantified using compartmental segmentation and digital image analysis. Real time images were captured and analyzed to obtain kinetic information and identify the rate-limiting step. The effect of transporter inhibitors was also evaluated. RESULTS: The transport processes of fluorescent probes can be captured and analyzed digitally. The intra- and inter- animal variability were 20.4% and 25.7%, respectively. Real time analysis showed distinct transport kinetics and rate-limiting step for anionic and cationic probes. A CP efflux index was proposed to distinguish between transepithelial flux and intracellular accumulation. Rifampin and MK571 decreased the overall transepithelial transport of anionic probes by more than 90%, indicating a possible involvement of organic anion transporting polypeptides (Oatps) and multidrug resistance-associated proteins (Mrps). CONCLUSIONS: A CP isolation method was described, and a quantitative fluorescence imaging approach was developed to evaluate CSF-to-blood transport in mouse CP. The method is consistent, reproducible, and capable of tracking real time transepithelial transport with temporal and spatial resolution. The approach can be used to evaluate transport mechanisms, assess tissue drug accumulation, and assay potential drug-drug interactions at the BCSFB.


Assuntos
Barreira Hematoencefálica , Corantes Fluorescentes , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Corantes Fluorescentes/metabolismo , Camundongos , Microscopia de Fluorescência
4.
Mol Pharmacol ; 101(5): 334-342, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193935

RESUMO

Formed by the choroid plexus epithelial (CPE) cells, the blood-cerebrospinal fluid barrier (BCSFB) plays an active role in removing drugs, toxins, and metabolic wastes from the brain. Several organic cation and anion transporters are expressed in the CPE cells, but how they functionally mediate transepithelial transport of organic cations and anions remain unclear. In this study, we visualized the transcellular transport of fluorescent organic cation and organic anion probes using live tissue imaging in freshly isolated mouse choroid plexuses (CPs). The cationic probe, 4-[4-(dimethylamino)phenyl]-1-methylpyridinium iodide (IDT307) was transported into CPE cells at the apical membrane and highly accumulated in mitochondria. Consistent with the lack of expression of organic cation efflux transporters, there was little efflux of IDT307 into the blood capillary space. Furthermore, IDT307 uptake and intracellular accumulation was attenuated by approximately 70% in CP tissues from mice with targeted deletion of the plasma membrane monoamine transporter (Pmat). In contrast, the anionic probe fluorescein-methotrexate (FL-MTX) was rapidly transported across the CPE cells into the capillary space with little intracellular accumulation. Rifampicin, an inhibitor of organic anion transporting polypeptides (OATPs), completely blocked FL-MTX uptake into the CPE cells whereas MK-571, a pan-inhibitor of multidrug resistance associated proteins (MRPs), abolished basolateral efflux of FL-MTX. In summary, our results suggest distinct transcellular transport pathways for organic cations and anions at the BCSFB and reveal a pivotal role of PMAT, OATP and MRP transporters in organic cation and anion transport at the blood-cerebrospinal fluid interface. SIGNIFICANCE STATEMENT: Live tissue imaging revealed that while organic cations are transported from the cerebrospinal fluid (CSF) into the choroid plexus epithelial cells by plasma membrane monoamine transporter without efflux into the blood, amphipathic anions in the CSF are efficiently transported across the BCSFB through the collaborated function of apical organic anion transporting polypeptides and basolateral multidrug resistance associated proteins. These findings contribute to a mechanistic understanding of the molecular and cellular pathways for choroid plexus clearance of solutes from the brain.


Assuntos
Barreira Hematoencefálica , Transportadores de Ânions Orgânicos , Animais , Ânions/metabolismo , Barreira Hematoencefálica/metabolismo , Cátions/metabolismo , Plexo Corióideo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Peptídeos/metabolismo , Transcitose
5.
AAPS J ; 23(3): 61, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33942198

RESUMO

Timely and efficient removal of xenobiotics and metabolites from the brain is crucial in maintaining the homeostasis and normal function of the brain. The choroid plexus (CP) forms the blood-cerebrospinal fluid barrier and vitally removes drugs and wastes from the brain through several co-existing clearance mechanisms. The CP epithelial (CPE) cells synthesize and secrete the cerebrospinal fluid (CSF). As the CSF passes through the ventricular and subarachnoid spaces and eventually drains into the general circulation, it collects and removes drugs, toxins, and metabolic wastes from the brain. This bulk flow of the CSF serves as a default and non-selective pathway for the removal of solutes and macromolecules from the brain interstitium. Besides clearance by CSF bulk flow, the CPE cells express several multispecific membrane transporters to actively transport substrates from the CSF side into the blood side. In addition, several phase I and II drug-metabolizing enzymes are expressed in the CPE cells, which enzymatically inactivate a broad spectrum of reactive or toxic substances. This review summarizes our current knowledge of the functional characteristics and key contributors to the various clearance pathways in the CP-CSF system, overviewing recent developments in our understanding of CSF flow dynamics and the functional roles of CP uptake and efflux transporters in influencing CSF drug concentrations.


Assuntos
Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Sistema Glinfático/metabolismo , Taxa de Depuração Metabólica , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...