Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
ACS Omega ; 9(21): 22703-22710, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826563

RESUMO

To address the challenges associated with formaldehyde emissions in engineered wood adhesives and simultaneously enhance adhesive properties related to water resistance, fire resistance, and mold resistance, a novel environmentally sustainable biomass-based adhesive was formulated. In this work, kraft lignin was carboxymethylated and then blended with the soy protein isolate (SPI)-based adhesive, the dry and wet shear strength of the plywood bonded by the resultant adhesive was enhanced from 1.10 and 0.63 MPa to 1.73 and 1.23 MPa, respectively, resulting in improvements of 157% and 195%. Carboxymethylated lignin (CML) significantly improved the mold resistance and flame-resistance residual rate of the adhesive and decreased the water absorption rate from 190% to 108%. Furthermore, the adhesive exhibits outstanding flame-retardancy, with self-extinguishing capability rendering it suitable for industrial production. In addition, we also evaluated the performances of resulting adhesives cured with different diepoxides and triepoxides, and the comparisons of the adhesive in this work to commercial urea glue and soy protein-based adhesives were conducted. To our delight, the SPI-10CML adhesive presented comparable or even improved performances, showing its promising practical applications such as for fire doors.

2.
Sci Total Environ ; 916: 170076, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220020

RESUMO

Bacteriophages (phages) can significantly influence the composition and functions of their host communities, and enhance host pathogenicity via the transport of phage-encoded virulence genes. Phages are the main component of animal gut viruses, however, there are few reports on the piglet gut phageome and its contribution to virulence genes. Here, a total of 185 virulence genes from 59,955 predicted genes of gut phages in weaned piglets were identified, with 0.688 % of the phage contigs coding for at least one virulence gene. The virulence gene pblA was the most abundant, with various virulence genes significantly correlated with gut phages and their encoded mobile gene element (MGE) genes. Importantly, multiple virulence genes and MGE genes coexist in some phage sequences, and up to 12 virulence genes were detected in a single phage sequence, greatly increasing the risk of phage-mediated transmission of virulence genes into the bacterial genome. In addition, diarrhoea has driven changes in the composition and structure of phage and bacterial communities in the intestinal tract of weaned piglets, significantly increasing the abundance of phage contigs encoding both virulence genes and MGE genes in faecal samples, which potentially increases the risk of phage-mediated virulence genes being transfected into the gut bacterial genome. In summary, this study expands our understanding of the gut microbiome of piglets, advances our understanding of the potential role of phages in driving host pathogenesis in the gut system, and provides new insights into the sources of virulence genes and genetic evolution of bacteria in pig farm environments.


Assuntos
Bacteriófagos , Viroma , Animais , Suínos , Virulência , Bacteriófagos/genética , Bactérias/genética , Fezes/microbiologia
3.
Int J Biol Macromol ; 256(Pt 1): 128289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000570

RESUMO

Lignocellulosic nanofibril (LCNF) is indispensable in numerous potential applications because of its unsurpassed quintessential characteristics. While it still remains a challenge to assemble LCNF in a facile and environmental economy-first manner. In this work, a simple and green one-step synthetic approach was reported to prepare a series of LCNF-containing versatile hydrogels using deep eutectic solvent (DES). In particular, the LCNF5% hydrogel (namely LCNF5%-gel) in this work perfectly integrated superior stretchability (∼643 %), and displayed a dramatically improved anti-swelling ability (25 %) compared to the control sample (neat DES hydrogel, 2252 %). Simultaneously, the LCNF5% hydrogel presented underwater adhesiveness and outstanding long-term low-temperature resistance (stable at -25 °C for a month). This novel multifunctional hydrogel, prepared by a facile and eco-friendly strategy, is potentially useful in wet adhesion or underwater applications.


Assuntos
Adesivos , Solventes Eutéticos Profundos , Lignina , Humanos , Temperatura , Edema , Hidrogéis
4.
J Dairy Sci ; 106(12): 9174-9185, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641240

RESUMO

Bovine mastitis is the most common and costly disease affecting dairy cattle throughout the world. Enterococcus faecalis is one of the environmental origin mastitis-causing pathogens. The treatment of bovine mastitis is primarily based on antibiotics. Due to the negative impact of developing antibiotic resistance and adverse effects on soil and water environments, the trend toward use of nonantibiotic treatments is increasing. Phages may represent a promising alternative treatment strategy. However, it is unknown whether phages have therapeutic effects on E. faecalis-induced mastitis. Thus, the objective of this study was to investigate the degree of protection conferred by a phage during murine mastitis caused by multidrug-resistant E. faecalis. Enterococcus faecalis was isolated from the milk of dairy cows with mastitis, and a phage was isolated using the E. faecalis isolates as hosts. The bactericidal ability of the phage against E. faecalis and the ability to prevent biofilm formation were determined in vitro. The therapeutic potential of the phage on murine mastitis was evaluated in vivo. We isolated 14 strains of E. faecalis from the milk of cows with mastitis, all of which exhibited multidrug resistance, and most (10/14) could form strong biofilms. Subsequently, a new phage (EF-N13) was isolated using the multidrug-resistant E. faecalis N13 (isolated from mastitic milk) as the host. The phage EF-N13 belongs to the family Myoviridae, which has short latent periods (5 min) and high bursts (284 pfu/cell). The genome of EF-N13 lacked bacterial virulence-, antibiotic resistance-, and lysogenesis-related genes. Furthermore, bacterial loading in the raw milk medium was significantly reduced by EF-N13 and was unaffected by potential IgG antibodies. In fact, EF-N13 could effectively prevent the formation of biofilm by multidrug-resistant E. faecalis. All of these characteristics suggest that EF-N13 has potential as mastitis therapy. In vivo, 1 × 105 cfu/gland of multidrug-resistant E. faecalis N13 resulted in mastitis development within 24 h. A single dose of phage EF-N13 (1 × 104, 1 × 105, or 1 × 106 pfu/gland) could significantly decrease bacterial counts in the mammary gland at 24 h postinfection. Histopathological observations demonstrated that treatment with phage EF-N13 effectively alleviated mammary gland inflammation and damage. This effect was confirmed by the lower levels of proinflammatory cytokines IL-6, IL-1ß, and tumor necrosis factor-α in the mammary gland treated with phage EF-N13 compared with those treated with phosphate-buffered saline. Overall, the data underscored the potential of phage EF-N13 as an alternative therapy for bovine mastitis caused by multidrug-resistant E. faecalis.


Assuntos
Bacteriófagos , Doenças dos Bovinos , Mastite Bovina , Animais , Bovinos , Feminino , Camundongos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Bacteriófagos/genética , Enterococcus faecalis , Mastite Bovina/terapia , Mastite Bovina/microbiologia
5.
Microorganisms ; 11(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110406

RESUMO

Porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2) is widely distributed in pig farms. Up until now, nine genotypes of PCV2, PCV2a to 2i, have been identified in diseased pigs worldwide. This study analyzed 302 samples collected in the Jilin Province of China from 2016 to 2021, followed by genetic analysis of the PCV2 isolates. Meanwhile, the antigen epitopes, amino acid mutations, 3D structure of the PCV2 isolates and commercially available vaccine strains were evaluated and compared. The results showed that the predominant genotypes of PCV2 were PCV2b, followed by PCV2e and PCV2d in Jilin Province during 2016-2021. Although mutations were detected in the isolates, no recombination occurred in the PCV2 isolates, indicating a stable genotype of PCV2 in Jilin Province during these years. Moreover, the B cell epitopes in the Cap and Rep proteins of eighteen PCV2 isolates and T cell epitopes in the Cap of the isolates were changed compared to three currently used vaccine strains. The mutations in the Cap and Rep proteins did not affect their spatial conformation. Therefore, bivalent or multivalent vaccines with different genotypes of PCV2 might improve the protective effect of vaccines.

6.
Sci Total Environ ; 859(Pt 2): 160304, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36427721

RESUMO

The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.


Assuntos
Bacteriófagos , Animais , Suínos , Bacteriófagos/genética , Metagenômica , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Bactérias , Genes Bacterianos
7.
Front Microbiol ; 14: 1329609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260894

RESUMO

Introduction: Klebsiella pneumoniae (K. pneumoniae) is an important opportunistic and zoonotic pathogen which is associated with many diseases in humans and animals. However, the pathogenicity of K. pneumoniae has been neglected and the prevalence of K. pneumoniae is poorly studied due to the lack of rapid and sensitive diagnosis techniques. Methods: In this study, we infected mice and pigs with K. pneumoniae strain from a human patient. An indirect ELISA was established using the KHE protein as the coating protein for the detection of K. pneumoniae specific antibody in clinical samples. A nested PCR method to detect nuclei acids of K. pneumoniae was also developed. Results: We showed that infection with K. pneumoniae strain from a human patient led to mild lung injury of pigs. For the ELISA, the optimal coating concentration of KHE protein was 10 µg/mL. The optimal dilutions of serum samples and secondary antibody were 1:100 and 1:2500, respectively. The analytical sensitivity was 1:800, with no cross-reaction between the coated antigen and porcine serum positive for antibodies against other bacteria. The intra-assay and inter-assay reproducibility coefficients of variation are less than 10%. Detection of 920 clinical porcine serum samples revealed a high K. pneumoniae infection rate by established indirect ELISA (27.28%) and nested PCR (19.13%). Moreover, correlation analysis demonstrated infection rate is positively correlated with gross population, Gross Domestic Product (GDP), and domestic tourists. Discussion: In conclusion, K. pneumoniae is highly prevalent among pigs in China. Our study highlights the role of K. pneumoniae in pig health, which provides a reference for the prevention and control of diseases associated with K. pneumoniae.

8.
BMC Cancer ; 22(1): 864, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941558

RESUMO

BACKGROUND: IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS: In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS: The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS: These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.


Assuntos
Arginina , Neoplasias da Mama , Leucil Aminopeptidase/metabolismo , Animais , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Bovinos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Interferon gama/metabolismo
9.
Vet Microbiol ; 268: 109425, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35397385

RESUMO

Streptococcus suis is an important zoonotic pathogen that is difficult to control with antibiotics due to the widespread development of multidrug-resistant strains. Phage lysin is considered a potential therapeutic agent to combat S. suis. In this study, the novel lysin Ply1228 derived from the prophage of S. suis type 12 was identified. Bioinformatics analysis showed that Ply1228 contains a CHAP catalytic domain, which is a binding domain composed of a CW-7 binding motif and an amidase-2 catalytic domain. The CHAP catalytic domain is essential for the bactericidal function of lysin Ply1228 and does not depend on the presence of Ca2+. C34 and H99 of the CHAP domain were identified as the key active sites. The CW-7 binding motif plays a key binding role in Ply1228. Ply1228 can specifically lyse S. suis, including types 2, 3, 7, 9, 10, 12, 14, and 27. Within 10 min, Ply1228 killed 4 log of the S. suis population, which had a starting concentration of approximately 107 CFU/mL. In addition, Ply1228 showed favourable thermal and pH stability. The therapeutic effect of Ply1228 was further investigated in a mouse model of S. suis bacteremia. The administration of the lysin Ply1228 (200 µg/mouse) 1 h after the intraperitoneal injection of 2 × MLD of SS2 strain SC225 was sufficient to protect the mice (P < 0.0001) and significantly reduced the bacterial loads in the blood and organs (livers, spleens, lungs and kidneys). The levels of inflammation and histopathological damage in infected mice were effectively relieved after the Ply1228 treatment. These results indicate that Ply1228 might represent a new enzybiotic candidate for S. suis infection.


Assuntos
Bacteriemia , Doenças dos Roedores , Infecções Estreptocócicas , Streptococcus suis , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Bacteriemia/veterinária , Camundongos , N-Acetil-Muramil-L-Alanina Amidase , Prófagos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária
10.
Biosens Bioelectron ; 198: 113799, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823965

RESUMO

Staphylococcus aureus (S. aureus), considered as a common foodborne pathogenic microorganism, usually causes food poisoning and various infectious diseases. Therefore, development of rapid and accurate bacterial detection method is the key to preventing food poisoning and achieving early diagnosis and treatment of various infectious diseases caused by S. aureus. Biolayer interferometry (BLI) technology is a novel technique of label-free optical analysis for real-time monitoring of biomolecular interactions. The C54A mutation induced the lytic activity loss of phage lysin LysGH15 but retained the capacity for specific recognizing and binding S. aureus. In this study, a novel method for the detection of S. aureus was established using the C54A mutant LysGH15 as the receptor in combination with BLI. Using this BLI-based method, S. aureus whole cells could be directly assayed and the limit of detection was 13 CFU/mL with a binding time of 12 min. Because the C54A mutant LysGH15 recognizes S. aureus with very high specificity, the method can exclude potential interference from other bacterial species. In addition, this method could also distinguish between viable and dead S. aureus. Moreover, S. aureus was successfully detected in ice cubes and light soy sauce by using this method. Collectively, these results indicate that the LysGH15-based BLI method can be used as an efficient and reliable diagnostic tool in the field of food safety and other related fields for the rapid, sensitive, label-free, and real-time detection of S. aureus.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus , Interferometria , Fagos de Staphylococcus , Staphylococcus aureus/genética , Tecnologia
11.
Front Microbiol ; 12: 736304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759899

RESUMO

Trueperella pyogenes (T. pyogenes) is an important opportunistic animal pathogen that causes huge economic losses to the animal husbandry industry. The emergence of bacterial resistance and the unsatisfactory effect of the vaccine have prompted investigators to explore alternative strategies for controlling T. pyogenes infection. Due to the ability of phages to kill multidrug-resistant bacteria, the use of phage therapy to combat multidrug-resistant bacterial infections has attracted attention. In this study, a T. pyogenes phage, vB-ApyS-JF1 (JF1), was isolated from sewage samples, and its whole genome and biological characteristics were elucidated. Moreover, the protective effect of phage JF1 on a mouse bacteremic model caused by T. pyogenes was studied. JF1 harbors a double-stranded DNA genome with a length of 90,130 bp (30.57% G + C). The genome of JF1 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. Moreover, the genome sequence of JF1 exhibited low coverage (<6%) with all published phages in the NCBI database, and a phylogenetic analysis of the terminase large subunits and capsid indicated that JF1 was evolutionarily distinct from known phages. In addition, JF1 was stable over a wide range of pH values (3 to 11) and temperatures (4 to 50°C) and exhibited strong lytic activity against T. pyogenes in vitro. In murine experiments, a single intraperitoneal administration of JF1 30 min post-inoculation provided 100% protection for mice against T. pyogenes infection. Compared to the phosphate-buffered saline (PBS) treatment group, JF1 significantly (P < 0.01) reduced the bacterial load in the blood and tissues of infected mice. Meanwhile, treatment with phage JF1 relieved the pathological symptoms observed in each tissue. Furthermore, the levels of the inflammatory cytokines tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and interleukin-6 (IL-6) in the blood of infected mice were significantly (P < 0.01) decreased in the phage-treated group. Taken together, these results indicate that phage JF1 demonstrated great potential as an alternative therapeutic treatment against T. pyogenes infection.

12.
Environ Sci Pollut Res Int ; 28(39): 55786-55795, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34142323

RESUMO

Toll-like receptors (TLRs), type I transmembrane pattern recognition receptors (PRRs), are composed of the extracellular domain that is implicated in the recognition of microbial products and initiates the innate and adaptive immune response. Previous reports on TLRs in birds showed significant levels of inter- and intraspecific genetic variation. Little is known about the structure and function of the avian immune system, especially waterfowl species. This work aimed to identify and clone Anas platyrhynchos (mallard duck) TLR-3 (dTLR-3) and its expression level following challenge with velogenic Newcastle disease virus (NDV) as a model for waterfowl species. The mallard duck TLR-3 full-length cDNA sequence had been cloned, which consisted of 2457 nucleotides. The translated amino acid sequence showed identity degree as 97% with Muscovy duck, 95% with geese, 89% with helmeted guineafowls, 88% with the chickens TLR-3 gene, 82% with turkey TLR-3, and 79% with zebra finch, while it showed 54% with human one; the analysis data suggested that the new sequence is probably homologous to vertebrates' TLR-3. The predicted protein encoded by the duck dTLR-3 mRNA sequence is composed of 819 amino acids. Analysis of the deduced amino acid sequence indicated that dTLR-3 has typical structural features and contains the main components of proteins in the TLR family. The dTLR-3 expressed in almost all examined tissues of mallard duck following quantitative real-time polymerase chain reaction (qPCR) analysis and using B-actin as a housekeeping gene. To check the functionality of the receptor and its role in viral infection, we evaluate the expression level in different tissues and its changes following NDV infection. The results showed significant (P < 0.05) upregulated in the brain at 24 h (1.84-fold), reached a peak at 48 h (4.82-fold), and recovered to normal levels at 72 h post-infection. These results indicate a complete and functional dTLR-3 that is orthologous to other vertebrate receptors with its potential role in early response against viral infection in mallard duck species.


Assuntos
Patos , Vírus da Doença de Newcastle , Animais , Galinhas , Vírus da Doença de Newcastle/genética , Receptor 3 Toll-Like
13.
Front Microbiol ; 12: 674068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968007

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is an important nosocomial and community acquired opportunistic pathogen which causes various infections. The emergence of multi-drug resistant (MDR) K. pneumoniae and carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) has brought more severe challenge to the treatment of K. pneumoniae infection. In this study, a novel bacteriophage that specifically infects K. pneumoniae was isolated and named as vB_KpnM_P-KP2 (abbreviated as P-KP2). The biological characteristics of P-KP2 and the bioinformatics of its genome were analyzed, and then the therapeutic effect of P-KP2 was tested by animal experiments. P-KP2 presents high lysis efficiency in vitro. The genome of P-KP2 shows homology with nine phages which belong to "KP15 virus" family and its genome comprises 172,138 bp and 264 ORFs. Besides, P-KP2 was comparable to gentamicin in the treatment of lethal pneumonia caused by K. pneumoniae W-KP2 (K47 serotype). Furthermore, the combined treatment of P-KP2 and gentamicin completely rescued the infected mice. Therefore, this study not only introduces a new member to the phage therapeutic library, but also serves as a reference for other phage-antibiotic combinations to combat MDR pathogens.

14.
Vet Res ; 52(1): 30, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618766

RESUMO

Host proteins interacting with pathogens are receiving more attention as potential therapeutic targets in molecular medicine. Streptococcus suis serotype 2 (SS2) is an important cause of meningitis in both humans and pigs worldwide. SS2 Enolase (Eno) has previously been identified as a virulence factor with a role in altering blood brain barrier (BBB) integrity, but the host cell membrane receptor of Eno and The mechanism(s) involved are unclear. This study identified that SS2 Eno binds to 40S ribosomal protein SA (RPSA) on the surface of porcine brain microvascular endothelial cells leading to activation of intracellular p38/ERK-eIF4E signalling, which promotes intracellular expression of HSPD1 (heat-shock protein family D member 1), and initiation of host-cell apoptosis, and increased BBB permeability facilitating bacterial invasion. This study reveals novel functions for the host-interactional molecules RPSA and HSPD1 in BBB integrity, and provides insight for new therapeutic strategies in meningitis.


Assuntos
Barreira Hematoencefálica , Células Endoteliais/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Ribossômicas/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus suis/metabolismo , Animais , Apoptose , Técnicas de Cocultura , Células Endoteliais/microbiologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Ligação Proteica , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32887718

RESUMO

Salmonella enterica subsp. enterica serovar Abortusequi is a frequently reported pathogen causing abortion in mares. In this study, the preventive and therapeutic effects of phage PIZ SAE-01E2 against S Abortusequi in a mouse model of abortion were investigated. Phage PIZ SAE-01E2 was stable at different temperatures (4 to 70°C) and pH values (pH 4 to 10) and could lyse the majority of the Salmonella serogroup O:4 and O:9 strains tested (25/28). There was no lysogeny-related, toxin, or antibiotic resistance-related gene in the genome of PIZ SAE-01E2. All of these characteristics indicate that PIZ SAE-01E2 has the potential for use in phage therapy. In in vivo experiments, 2 × 103 CFU/mouse of S Abortusequi ATCC 9842 was sufficient to lead to murine abortion (gestational day 14.5) within 48 h. A single intraperitoneal inoculation of PIZ SAE-01E2 (108 PFU/mouse, multiplicity of infection = 105) 1 h before or after S Abortusequi challenge provided effective protection to all pregnant mice (10/10). After 24 h of treatment with phage PIZ SAE-01E2, the bacterial loads in both the placenta and the uterus of the infected mice were significantly decreased (<102 CFU/g) compared to those in the placenta and the uterus of the mice in the control group (>106 CFU/g). In addition, the levels of inflammatory cytokines in the placenta and blood of the mice in the phage administration groups were significantly reduced (P < 0.05) compared to those in the placenta and blood of the mice in the control group. Altogether, these findings indicate that PIZ SAE-01E2 shows the potential to block abortions induced by S Abortusequi in vivoIMPORTANCES Abortusequi is an important pathogen that can induce abortions in mares. Although S Abortusequi has been well controlled in Europe and the United States due to strict breeding and health policies, it is still widespread in African and Asian countries and has proven difficult to control. In China, abortions caused by S Abortusequi have also been reported in donkeys. So far, there is no commercial vaccine. Thus, exploiting alternative efficient and safe strategies to control S Abortusequi infection is essential. In this study, a new lytic phage, PIZ SAE-01E2, infecting S Abortusequi was isolated, and the characteristics of PIZ SAE-01E2 indicated that it has the potential for use in phage therapy. A single intraperitoneal inoculation of PIZ SAE-01E2 before or after S Abortusequi challenge provided effective protection to all pregnant mice. Thus, PIZ SAE-01E2 showed the potential to block abortions induced by S Abortusequi in vivo.


Assuntos
Aborto Animal/prevenção & controle , Bacteriófagos/fisiologia , Doenças dos Cavalos/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella/fisiologia , Aborto Animal/microbiologia , Aborto Animal/virologia , Animais , Feminino , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/virologia , Cavalos , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Salmonelose Animal/microbiologia , Salmonelose Animal/virologia
16.
AMB Express ; 10(1): 123, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32642871

RESUMO

Actinobacillus pleuropneumoniae (A. pleuropneumoniae/APP) is the pathogen that causes porcine contagious pleuropneumonia. Actinobacillus pleuropneumoniae is divided into 18 serovars, and the cross protection efficacy of epitopes is debatable, which has resulted in the slow development of a vaccine. Consequently, epitope-based vaccines conferring Actinobacillus pleuropneumoniae cross protection have rarely been reported. In this study, B cell epitopes in the head domain of trimeric autotransporter adhesin were predicted, and 6 epitopes were selected. Then, the predicted epitopes (Ba1, Bb5, C1, PH1 and PH2) were connected by linkers to construct a recombinant tandem antigen (rta) gene. The RTA protein encoded by the recombinant rta gene was expressed, and finally the ICR mice were immunized with the RTA protein with or without inactivated Actinobacillus pleuropneumoniae (serovars 1 and 5b) and challenged with Actinobacillus pleuropneumoniae to evaluate the protective effect of the epitope-based vaccine and combined vaccine. The mice in the RTA-immunized group and RTA plus inactivated Actinobacillus pleuropneumoniae vaccine group had a significant improvement in clinical symptoms and a higher level of antibody in the serum than those in the control group. The RTA immune group had a 40% survival rate after Actinobacillus pleuropneumoniae infection, whereas the combination of RTA and inactivated Actinobacillus pleuropneumoniae produced very strong cross immune protection in mice, at least 50% (RTA IB1 + C5) and at most 100% (RTA IB5 + C1), whereas no cross immunoprotection was found in the solo Actinobacillus pleuropneumoniae immune group. Overall, the combination of the RTA protein and inactivated bacteria significantly enhanced the cross protection effects. This implies that RTA protein in combination with a suitable inactivated Actinobacillus pleuropneumoniae strain could be a candidate vaccine for porcine contagious pleuropneumonia.

17.
AMB Express ; 10(1): 121, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632500

RESUMO

Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) is a swine respiratory disease with an important impact around the world either as a single infection or part of the porcine respiratory disease complex. The data of interaction between hosts and pathogens has becoming more crucial for exploration of the mechanism. However, up to now, comparatively little information is available on the systemic and dynamic changes that occur in pig serum in response to APP infection. This study used iTRAQ to identify differentially expressed proteins (DEPs) in pig serum in response to APP infection. Compared with the APP un-infected group (S0),there were 137 up-regulated and 68 down-regulated proteins at 24 h (S24), and 81 up-regulated and 107 down-regulated proteins at 120 h (S120). At 24 h, the immune response was not significantly enriched, but cell adhesion, cytosol, Golgi apparatus, GTP and ATP binding and regulation of cell cycle were extremely active, implying host preparation of immune response starting. Subsequently, innate immune response, negative regulation of apoptotic process, immunological synapse, adaptive immune response, the regulation of inflammatory response, positive regulation of T cell proliferation were more enhanced at 120 h then that of 24 h, representing innate immunity transferring to the adaptive, while endocytosis, cell adhesion and platelet aggregation showed obvious decline. The pathways of T cell receptor signaling pathway, cytokine-cytokine receptor interaction, complement and coagulation cascades, leukocyte transendothelial migration were active remarkably during all infection period, and more pathways could connect to form innate immune defense networks. Surprisingly, the pathways like amoebiasis, rheumatoid arthritis and malaria had been found up-regulated. As a conclusion, APP could delay host inflammatory response to the infection at early stage, and induced innate immunity to convert from adhesion, interaction into complement activation, proteasome digestion, bacterial invasion at later stage. This would increase our understanding of the porcine distinct response to APP infection.

18.
Anticancer Drugs ; 31(4): 403-410, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917701

RESUMO

Our retrospective study assessed the efficacy and safety of irinotecan plus raltitrexed in esophageal squamous cell cancer (ESCC) patients who were previously treated with multiple systemic therapies. Between January 2016 and December 2018, records of 38 ESCC patients who underwent irinotecan plus raltitrexed chemotherapy after at least one line of chemotherapy were reviewed. Efficacy assessment was performed every two cycles according to the RECIST version 1.1. A total of 95 cycles of chemotherapy were administered, and the median course was 3 (range 2-6). There was no treatment-related death. Nine patients had partial response, 21 had stable disease and eight had progressive disease. The overall objective response rate was 23.68% (9/38) and the disease control rate was78.94% (30/38). After a median follow-up of 18.5 months, the median progression-free survival and overall survival were 105 and 221 days, respectively. There were five patients (13.15%) with grade 3/4 leukopenia, three patients (7.89%) with grade 3/4 neutropenia and one patient (2.63%) with grade 3/4 diarrhea. The combination of irinotecan plus raltitrexed was effective for pretreated ESCC patients. Further studies are needed to determine the optimal dose of the two drugs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Terapia de Salvação , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Seguimentos , Humanos , Irinotecano/administração & dosagem , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prognóstico , Quinazolinas/administração & dosagem , Estudos Retrospectivos , Taxa de Sobrevida , Tiofenos/administração & dosagem
19.
Sci Rep ; 9(1): 9500, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263154

RESUMO

Neuropeptide Y (NPY) is an abundant neuropeptide in the mammalian central and peripheral nervous systems. Transgenic mice overexpressing NPY in noradrenergic neurons have increased level of hepatic triglycerides, fatty acids and cholesterol, which contributed to the development of hepatosteatosis. However, the roles of NPY in the activation of hepatic stellate cells (HSCs) and the underlying mechanisms remain unclear. This study aimed to investigate the expression and secretion of NPY in human immortalized HSC LX-2 cells and the regulatory function of NPY on the fibrogenic response in LX-2 cells, to explore the potential association between NPY and LX-2 activation. The results showed an increase in the expression and secretion of NPY(1-36) in activated LX-2 cells. Both endogenous and exogenous NPY(1-36) induced the phosphorylation of mTOR, p70S6K, and 4EBP1 and promoted the fibrogenic response via NPY Y1 receptor subtype (NPY1R), as these responses were blocked by either an NPY1R antagonist (BIBP3226) or NPY1R knockdown. Moreover, NPY(1-36) serum levels were increased in patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) and presented a positive relationship with MELD scores in LC patients. These findings suggest that immortalized HSCs LX-2 have the potential to produce NPY(1-36). High serum levels of NPY(1-36) is correlated with hepatic dysfunction in cirrhotic patients.


Assuntos
Células Estreladas do Fígado/metabolismo , Neuropeptídeo Y/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/análogos & derivados , Arginina/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Fibrose/metabolismo , Fibrose/patologia , Células Estreladas do Fígado/patologia , Humanos , Neuropeptídeo Y/genética , Fosforilação , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Virus Genes ; 55(5): 696-706, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254238

RESUMO

Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Klebsiella/virologia , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/genética , Bacteriófagos/efeitos da radiação , Genoma Viral , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fases de Leitura Aberta , Homologia de Sequência , Sintenia , Temperatura , Carga Viral , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...