Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(10): 2304-2319, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526209

RESUMO

Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.


Assuntos
Diospyros , Proantocianidinas , Diospyros/genética , Diospyros/metabolismo , Adstringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Proantocianidinas/metabolismo
2.
Polymers (Basel) ; 13(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883723

RESUMO

This study prepared 4,4-diaminodiphenylmethane (DDM)-functionalized graphene oxide (GO)@silica dioxide (SiO2) nano-composites through amidation reaction and low-temperature precipitation. The resulting modified GO, that was DDM-GO@SiO2. The study found that DDM-GO@SiO2 showed good dispersion and compatibility with thermoplastic polyurethane (TPU) substrates. Compared with pure TPU, the tensile strength of the TPU composites increased by 41% to 94.6 MPa at only 0.5 wt% DDM-GO@SiO2. In addition, even when a small amount of DDM-GO@SiO2 was added, the UV absorption of TPU composites increased significantly, TPU composites can achieve a UV shielding efficiency of 95.21% in the UV-A region. These results show that this type of material holds great promise for the preparation of functional coatings and film materials with high strength and weather resistance.

3.
PLoS Negl Trop Dis ; 14(8): e0008660, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866199

RESUMO

Aedes mosquitoes can transmit dengue and several other severe vector-borne viral diseases, thereby influencing millions of people worldwide. Insects primarily control and clear the viral infections via their innate immune systems. Mitogen-Activated Protein Kinases (MAPKs) and antimicrobial peptides (AMPs) are both evolutionarily conserved components of the innate immune systems. In this study, we investigated the role of MAPKs in Aedes mosquitoes following DENV infection by using genetic and pharmacological approaches. We demonstrated that knockdown of ERK, but not of JNK or p38, significantly enhances the viral replication in Aedes mosquito cells. The Ras/ERK signaling is activated in both the cells and midguts of Aedes mosquitoes following DENV infection, and thus plays a role in restricting the viral infection, as both genetic and pharmacological activation of the Ras/ERK pathway significantly decreases the viral titers. In contrast, inhibition of the Ras/ERK pathway enhances DENV infection. In addition, we identified a signaling crosstalk between the Ras/ERK pathway and DENV-induced AMPs in which defensin C participates in restricting DENV infection in Aedes mosquitoes. Our results reveal that the Ras/ERK signaling pathway couples AMPs to mediate the resistance of Aedes mosquitoes to DENV infection, which provides a new insight into understanding the crosstalk between MAPKs and AMPs in the innate immunity of mosquito vectors during the viral infection.


Assuntos
Aedes/virologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Vírus da Dengue/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Linhagem Celular , Sistema Digestório/virologia , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Imunidade Inata , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mosquitos Vetores/virologia , Carga Viral , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...