Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(5): 4008-4018, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277229

RESUMO

Mixed ion-electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.


Assuntos
Elétrons , Hidrogéis , Nitritos , Elementos de Transição , Condutividade Elétrica , Eletricidade , Íons
2.
Biosensors (Basel) ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671950

RESUMO

Bioinformation plays an imperative role in day-to-day life. Wearable bioelectronics are important for sensing bioinformation in real-time and conductive hydrogel fibers are a key component in next generation wearable bioelectronics. However, current conductive hydrogel fibers have remarkable disadvantages such as insufficient conductivity, stability, and bioinformation sensing ability. Here, we report the synthesis of a zwitterionic organohydrogel (ZOH) fiber by the combination of the mold method and solvent replacement strategy. The ZOH fiber shows transparency (92.1%), stretchability (905.8%), long-term stability, anti-freezing ability (-35-60 °C), and low light transmission loss (0.17 dB/cm). Then, we integrate the ZOH fiber into fabric for use as a bioinformation sensor, the results prove its capability as a bioinformation monitor, monitoring information such as motion and bioelectric signals. In addition, the potential of the ZOH fiber in optogenetic applications is also confirmed.


Assuntos
Dispositivos Eletrônicos Vestíveis , Movimento (Física) , Hidrogéis , Condutividade Elétrica , Têxteis
3.
ACS Nano ; 16(11): 19373-19384, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36279105

RESUMO

Human-machine interaction plays a significant role in promoting convenience, production efficiency, and usage experience. Because of the universality and characteristics of electroencephalogram (EEG) signals, active EEG interaction is a promising and cutting-edge method for human-machine interaction. The seamless, skin-compliant, and motion-robust human-machine interface (HMI) for active EEG interaction has been in focus. Herein, we report a self-adaptive HMI (PAAS-MXene hydrogel) that can activate rapid gelation (5 s) using MXene cross-linking and conformably self-adapt to the scalp to help improve signal transduction. In addition to exhibiting satisfactory skin compliance, appropriate adhesion, and good biocompatibility, PAAS-MXene has demonstrated electrical performance reliability, such as low impedance (<50 Ω) at physiologically relevant frequencies, stable polarization potential (the rate of change is less than 6.5 × 10-4 V/min), negligible ion conductivity, and impedance change after 1000 stretch cycles, thereby realizing acquisition of EEG signals. In addition, a cap-free EEG signal acquisition method based on PAAS-MXene has been proposed. These findings confirm the high-precision detection ability of PAAS-MXene for electrocardiogram signals and EEG signals. Therefore, PAAS-MXene offers an option to actively control intention, motion, and vision through active EEG signals.


Assuntos
Algoritmos , Hidrogéis , Humanos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Condutividade Elétrica
4.
J Mech Behav Biomed Mater ; 121: 104593, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090118

RESUMO

To overcome the interfacial problem between X-ray radiopaque ZrO2 fillers and polymer resin in dental composites, monodispersed SiO2@ZrO2@SiO2 (SZS) microspheres with narrow size distribution were prepared by a controlled sol-gel method. In the presence of SiO2 coating layer over SiO2@ZrO2 (SZ) microspheres, they were easily silanized same as SiO2 microspheres. Ethoxylated bisphenol A dimethacrylate (EBPADMA) with a higher molecular weight and a lower viscosity was used as base resin monomer mixed with a low amount of diluent triethylene glycol dimethacrylate (TEGDMA). Additionally, the addition of a small amount of pore agent acetone dicarboxylic acid (ADCA) produced some voids, thereby effectively reducing the polymerization shrinkage of the resin. The prepared dental composites combining 52 wt% monodispersed silica microsphere, 20 wt% SZS microspheres, exhibited significantly enhanced capacity in radiopacity (higher than tooth enamel) and very low shrinkage (<0.1%). It also has better mechanical properties than resin composites filled with SiO2 microspheres, and its strength can meet practical applications. The properties of the radiopaque dental composite were to be further tuned by varying the amount of SZS microspheres contents, and the radiopaque resin has an advantage over the commercial one in that it is clinically nondestructive.


Assuntos
Metacrilatos , Dióxido de Silício , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Teste de Materiais , Polietilenoglicóis , Polimerização , Ácidos Polimetacrílicos , Viscosidade
5.
Polymers (Basel) ; 11(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174406

RESUMO

Polylactic acid (PLA) is one of the most promising bio-based materials, but its inherent hydrophobicity limits its application. Although nanocellulose (NCC) is a desirable reinforcement for PLA, the poor interface compatibility between the two has been a challenge. In this work, hydroxyapatite (HAP) modified NCC was prepared, and the obtained NCC/HAP reinforcement was used to prepare PLA/NCC-HAP composites. Different ratios of NCC to HAP were studied to explore their effects on the mechanical and thermodynamic properties of the composites. When the ratio of NCC to HAP was 30/70, the tensile strength and tensile modulus of the composite film reached 45.6 MPa and 2.34 GPa, respectively. Thermogravimetric analysis results indicate that thermal stability of the composites was significantly improved compared with pure PLA, reaching 346.6 °C. The above revelations show that NCC/HAP significantly improved the interface compatibility with PLA matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...