Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174391, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955272

RESUMO

Atmospheric hydrogen peroxide (H2O2), as an important oxidant, plays a key role in atmospheric chemistry. To reveal its characteristics in polluted areas, comprehensive observations were conducted in Zhengzhou, China from February 22 to March 4, 2019, including heavy pollution days (HP) and light pollution days (LP). High NO concentrations (18 ± 26 ppbv) were recorded in HP, preventing the recombination reaction of two HO2• radicals. Surprisingly, higher concentrations of H2O2 were observed in HP (1.5 ± 0.6 ppbv) than those in LP (1.2 ± 0.6 ppbv). In addition to low wind speed and relative humidity, the elevated H2O2 in HP could be mainly attributed to intensified particle-phase photoreactions and biomass burning. In terms of sulfate formation, transition-metal ions (TMI)-catalyzed oxidation emerged as the predominant oxidant pathway in both HP and LP. Note that the average H2O2 oxidation rate increased from 3.6 × 10-2 in LP to 1.1 × 10-1 µg m-3 h-1 in HP. Moreover, the oxidation by H2O2 might exceed that of TMI catalysis under specific conditions, emerging as the primary driver of sulfate formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...