Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sci Adv ; 9(2): eadd4623, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630502

RESUMO

Lipid nanoparticle (LNP)-based mRNA delivery holds promise for the treatment of inherited retinal degenerations. Currently, LNP-mediated mRNA delivery is restricted to the retinal pigment epithelium (RPE) and Müller glia. LNPs must overcome ocular barriers to transfect neuronal cells critical for visual phototransduction, the photoreceptors (PRs). We used a combinatorial M13 bacteriophage-based heptameric peptide phage display library for the mining of peptide ligands that target PRs. We identified the most promising peptide candidates resulting from in vivo biopanning. Dye-conjugated peptides showed rapid localization to the PRs. LNPs decorated with the top-performing peptide ligands delivered mRNA to the PRs, RPE, and Müller glia in mice. This distribution translated to the nonhuman primate eye, wherein robust protein expression was observed in the PRs, Müller glia, and RPE. Overall, we have developed peptide-conjugated LNPs that can enable mRNA delivery to the neural retina, expanding the utility of LNP-mRNA therapies for inherited blindness.


Assuntos
Nanopartículas , Roedores , Camundongos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligantes , Retina/metabolismo , Peptídeos/metabolismo , Primatas
2.
Adv Healthc Mater ; 12(13): e2202830, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716704

RESUMO

Recent preclinical and clinical studies have highlighted the improved outcomes of combination radiotherapy and immunotherapy. Concurrently, the development of high-Z metallic nanoparticles as radiation dose enhancers has been explored to widen the therapeutic window of radiotherapy and potentially enhance immune activation. In this study, folate-modified hafnium-based metal-organic frameworks (HfMOF-PEG-FA) are evaluated in combination with imiquimod, a TLR7 agonist, as a well-defined interferon regulatory factor (IRF) stimulator for local antitumor immunotherapy. The enhancement of radiation dose deposition by HfMOF-PEG-FA and subsequent generation of reactive oxygen species (ROS) deregulates cell proliferation and increases apoptosis. HfMOF-PEG-FA loaded with imiquimod (HfMOF-PEG-FA@IMQ) increases DNA double-strand breaks and cell death, including apoptosis, necrosis, and calreticulin exposure, in response to X-ray irradiation. Treatment with this multipronged therapy promotes IRF stimulation for subsequent interferon production within tumor cells themselves. The novel observation is reported that HfMOF itself increases TLR7 expression, unexpectedly pairing immune agonist and receptor upregulation in a tumor intrinsic manner, and supporting the synergistic effect observed with the γH2AX assay. T-cell analysis of CT26 tumors following intratumoral administration of HfMOF-PEG-FA@IMQ with radiotherapy reveals a promising antitumor response, characterized by an increase in CD8+ and proliferative T cells.


Assuntos
Interferon Tipo I , Estruturas Metalorgânicas , Neoplasias , Humanos , Imiquimode/farmacologia , Receptor 7 Toll-Like/agonistas , Estruturas Metalorgânicas/farmacologia , Háfnio/metabolismo , Regulação para Cima , Interferon Tipo I/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Linhagem Celular Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-36308008

RESUMO

Radioenhancing nanoparticles (NPs) are being evaluated in ongoing clinical trials for various cancers including head and neck, lung, esophagus, pancreas, prostate, and soft tissue sarcoma. Supported by decades of preclinical investigation and recent randomized trial data establishing clinical activity, these agents are poised to influence future multimodality treatment paradigms involving radiotherapy. Although the physical interactions between NPs and ionizing radiation are well characterized, less is known about how these agents modify the tumor microenvironment, particularly regarding tumor immunogenicity. In this review, we describe the key multidisciplinary considerations related to radiation, surgery, immunology, and pathology for designing radioenhancing NP clinical trials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanopartículas , Neoplasias , Masculino , Humanos , Nanomedicina , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Pulmão , Nanopartículas/uso terapêutico , Microambiente Tumoral
4.
Small Methods ; 6(12): e2200916, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319445

RESUMO

Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Camundongos , Animais , Nanopartículas de Magnetita/uso terapêutico , Hipertermia Induzida/métodos , Calefação , Campos Magnéticos , Hipertermia , Neoplasias/terapia , Nitrogênio
5.
Transl Oncol ; 16: 101336, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34986454

RESUMO

Radiation is a powerful tool used to control tumor growth and induce an immune response; however, it is limited by damage to surrounding tissue and adverse effects such skin irritation. Breast cancer patients in particular may endure radiation dermatitis, and potentially lymphedema, after a course of radiotherapy. Radio-sensitizing small molecule drugs may enable lower effective doses of both radiation and chemotherapy to minimize toxicity to healthy tissue. In this study, we identified a novel high-throughput method for screening radiosensitizers by image analysis of nuclear size and cell cycle. In vitro assays were performed on cancer cells lines to assess combined therapeutic and radiation effects. In vivo, radiation in combination with proflavine hemisulfate led to enhanced efficacy demonstrated by improved tumor volume control in mice bearing syngeneic breast tumors. This study provides a proof of concept for utilizing G2/M stall as a predictor of radiosensitization and is the first report of a flavin acting as an X-ray radiation enhancer in a breast cancer mouse model.

6.
Data Brief ; 38: 107394, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34632011

RESUMO

Nanoparticle characterization and in vitro data on the effects of combined PARP inhibition and DNA damage by chemoradiation are shown. This data accompanies the research article "Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer" (DuRoss et al., 2021) Additional characterization of the physiochemical properties of nanoscale metal organic frameworks (nMOFs) comprised of hafnium and 1,4-dicarboxybenzene (Hf-BDC) loaded with temozolomide (TMZ) and talazoparib (Tal) are presented. Toxicity data of the drug-loaded nMOF coated with fucoidan (TT@Hf-BDC-Fuco) in colorectal cancer cells, CT-26, from alamarBlue-based chemoradiation experiments are shown. Experimental methods for the nanoparticle characterization and cell-based assays of the nMOF formulation are presented.

7.
Pharmaceutics ; 13(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683988

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive cancer that has the highest mortality rate out of all breast cancer subtypes. Conventional clinical treatments targeting ER, PR, and HER2 receptors have been unsuccessful in the treatment of TNBC, which has led to various research efforts in developing new strategies to treat TNBC. Targeted molecular therapy of TNBC utilizes knowledge of key molecular signatures of TNBC that can be effectively modulated to produce a positive therapeutic response. Correspondingly, RNA-based therapeutics represent a novel tool in oncology with their ability to alter intrinsic cancer pathways that contribute to poor patient prognosis. Current RNA-based therapeutics exist as two major areas of investigation-RNA interference (RNAi) and RNA nanotherapy, where RNAi utilizes principles of gene silencing, and RNA nanotherapy utilizes RNA-derived nanoparticles to deliver chemotherapeutics to target cells. RNAi can be further classified as therapeutics utilizing either small interfering RNA (siRNA) or microRNA (miRNA). As the broader field of gene therapy has advanced significantly in recent years, so too have efforts in the development of effective RNA-based therapeutic strategies for treating aggressive cancers, including TNBC. This review will summarize key advances in targeted molecular therapy of TNBC, describing current trends in treatment using RNAi, combination therapies, and recent efforts in RNA immunotherapy, utilizing messenger RNA (mRNA) in the development of cancer vaccines.

8.
Front Chem ; 9: 642530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748077

RESUMO

Recent interest in cancer immunotherapy has largely been focused on the adaptive immune system, particularly adoptive T-cell therapy and immune checkpoint blockade (ICB). Despite improvements in overall survival and progression-free survival across multiple cancer types, neither cell-based therapies nor ICB results in durable disease control in the majority of patients. A critical component of antitumor immunity is the mononuclear phagocyte system and its role in both innate and adaptive immunity. The phagocytic functions of these cells have been shown to be modulated through multiple pathways, including the CD47-SIRPα axis, which is manipulated by cancer cells for immune evasion. In addition to CD47, tumors express a variety of other "don't eat me" signals, including beta-2-microglobulin and CD24, and "eat me" signals, including calreticulin and phosphatidylserine. Therapies targeting these signals can lead to increased phagocytosis of cancer cells; however, because "don't eat me" signals are markers of "self" on normal cells, treatment can result in negative off-target effects, such as anemia and B-cell depletion. Recent preclinical research has demonstrated the potential of nanocarriers to synergize with prophagocytic therapies, address the off-target effects, improve pharmacokinetics, and codeliver chemotherapeutics. The high surface area-to-volume ratio of nanoparticles paired with preferential size for passive targeting allows for greater accumulation of therapeutic cargo. In addition, nanomaterials hold promise as molecular imaging agents for the detection of phagocytic markers. This mini review highlights the unique capabilities of nanotechnology to expand the application and efficacy of immunotherapy through recently discovered phagocytotic checkpoint therapies.

9.
Biomater Sci ; 9(2): 496-505, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33006335

RESUMO

The development of radiation responsive materials, such as nanoscintillators, enables a variety of exciting new theranostic applications. In particular, the ability of nanophosphors to serve as molecular imaging agents in novel modalities, such as X-ray luminescence computed tomography (XLCT), has gained significant interest recently. Here, we present a radioluminescent nanoplatform consisting of Tb-doped nanophosphors with an unique core/shell/shell (CSS) architecture for improved optical emission under X-ray excitation. Owing to the spatial confinement and separation of luminescent activators, these CSS nanophosphors exhibited bright optical luminescence upon irradiation. In addition to standard physiochemical characterization, these CSS nanophosphors were evaluated for their ability to serve as energy mediators in X-ray stimulated photodynamic therapy, also known as radiodynamic therapy (RDT), through attachment of a photosensitizer, rose bengal (RB). Furthermore, cRGD peptide was used as a model targeting agent against U87 MG glioblastoma cells. In vitro RDT efficacy studies suggested the RGD-CSS-RB in combination with X-ray irradiation could induce enhanced DNA damage and increased cell killing, while the nanoparticles alone are well tolerated. These studies support the utility of CSS nanophosphors and warrants their further development for theranostic applications.


Assuntos
Nanopartículas , Fotoquimioterapia , Luminescência , Fármacos Fotossensibilizantes , Raios X
10.
Chemistry ; 27(10): 3229-3237, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32902003

RESUMO

X-ray radiation is commonly employed in clinical practice for diagnostic and therapeutic applications. Over the past decade, developments in nanotechnology have led to the use of high-Z elements as the basis for innovative new treatment platforms that enhance the clinical efficacy of X-ray radiation. Nanoscale metal-frameworks (nMOFs) are coordination networks containing organic ligands that have attracted attention as therapeutic platforms in oncology and other areas of medicine. In cancer therapy, X-ray activated, high-Z nMOFs have demonstrated potential as radiosensitizers that increase local radiation dose deposition and generation of reactive oxygen species (ROS). This minireview summarizes current research on high-Z nMOFs in cancer theranostics and discusses factors that may influence future clinical application.


Assuntos
Neoplasias , Humanos , Estruturas Metalorgânicas , Nanoestruturas , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão , Raios X
11.
Cancer Lett ; 500: 208-219, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232787

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related death for both men and women, highlighting the need for new treatment strategies. Advanced disease is often treated with a combination of radiation and cytotoxic agents, such as DNA damage repair inhibitors and DNA damaging agents. To optimize the therapeutic window of these multimodal therapies, advanced nanomaterials have been investigated to deliver sensitizing agents or enhance local radiation dose deposition. In this study, we demonstrate the feasibility of employing an inflammation targeting nanoscale metal-organic framework (nMOF) platform to enhance CRC treatment. This novel formulation incorporates a fucoidan surface coating to preferentially target P-selectin, which is over-expressed or translocated in irradiated tumors. Using this radiation stimulated delivery strategy, a combination PARP inhibitor (talazoparib) and chemotherapeutic (temozolomide) drug-loaded hafnium and 1,4-dicarboxybenzene (Hf-BDC) nMOF was evaluated both in vitro and in vivo. Significantly, these drug-loaded P-selectin targeted nMOFs (TT@Hf-BDC-Fuco) show improved tumoral accumulation over multiple controls and subsequently enhanced therapeutic effects. The integrated radiation and nanoformulation treatment demonstrated improved tumor control (reduced volume, density, and growth rate) and increased survival in a syngeneic CRC mouse model. Overall, the data from this study support the continued investigation of radiation-priming for targeted drug delivery and further consideration of nanomedicine strategies in the clinical management of advanced CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Nanopartículas/química , Selectina-P/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimiorradioterapia/efeitos adversos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Háfnio/farmacologia , Humanos , Camundongos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Temozolomida/farmacologia
12.
Nanomaterials (Basel) ; 10(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722132

RESUMO

X-ray radiotherapy is a common method of treating cancerous tumors or other malignant lesions. The side effects of this treatment, however, can be deleterious to patient quality of life if critical tissues are affected. To potentially lower the effective doses of radiation and negative side-effects, new classes of nanoparticles are being developed to enhance reactive oxygen species production during irradiation. This report presents the synthesis and radiotherapeutic efficacy evaluation of a new nanoparticle formulation designed for this purpose, composed of a CaF2 core, mesoporous silica shell, and polyethylene glycol coating. The construct was additionally doped with Tb and Eu during the CaF2 core synthesis to prepare nanoparticles (NPs) with X-ray luminescent properties for potential application in fluorescence imaging. The mesoporous silica shell was added to provide the opportunity for small molecule loading, and the polyethylene glycol coating was added to impart aqueous solubility and biocompatibility. The potential of these nanomaterials to act as radiosensitizers for enhancing X-ray radiotherapy was supported by reactive oxygen species generation assays. Further, in vitro experiments indicate biocompatibility and enhanced cellular damage during X-ray radiotherapy.

13.
ACS Omega ; 5(25): 15424-15432, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637817

RESUMO

The folate analogue pemetrexed (PEM) is an approved therapeutic for non-small cell lung cancer and malignant pleural mesothelioma with the potential for broader application in combination therapies. Here, we report the development of a nanoformulation of PEM and its efficacy against the CT26 murine colorectal cancer cell line in vitro and in vivo. Utilizing layer-by-layer deposition, we integrate PEM, along with folic acid (FA), onto a fluorescent polystyrene nanoparticle (NP) substrate. The final nanoformulation (PEM/FA-NP) has a size of ∼40 nm and a zeta potential of approximately -20 mV. Cell uptake studies indicated increased uptake in vitro for the PEM/FA-NP compared to the uncoated NP, likely due to the presence of PEM and FA. Viability studies were performed to determine the potency of the PEM/FA-NP formulation against CT26 cells. Syngeneic CT26 tumors in BALB/c mice showed reduced growth when treated once daily (2.1 mg/kg PEM) for 3 days with PEM/FA-NP versus the vehicle (uncoated) control, with no observable signs of systemic toxicity associated with the nanoformulation. Although the current study size is limited (n = 4 animals for each group), the overall performance and biocompatibility of the PEM/FA-NP observed suggest that further optimization and larger-scale studies may be warranted for this novel formulation.

14.
ACS Appl Mater Interfaces ; 12(24): 26943-26954, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32442367

RESUMO

In this report, we describe the X-ray luminescent properties of two lanthanide-based nanoscale metal-frameworks (nMOFs) and their potential as novel platforms for optical molecular imaging techniques such as X-ray excited radioluminescence (RL) imaging. Upon X-ray irradiation, the nMOFs display sharp tunable emission peaks that span the visible to near-infrared spectral region (∼400-700 nm) based on the identity of the metal (Eu, Tb, or Eu/Tb). Surface modification of the nMOFs with polyethylene glycol (PEG) resulted in nanoparticles with enhanced aqueous stability that demonstrated both cyto- and hemo-compatibility important prerequisites for biological applications. Importantly, this is the first report to document and investigate the radioluminescent properties of lanthanide nMOFs. Taken together, the observed radioluminescent properties and low in vitro toxicity demonstrated by the nMOFs render them promising candidates for in vivo translation.


Assuntos
Elementos da Série dos Lantanídeos/química , Estruturas Metalorgânicas , Imagem Multimodal , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/química
15.
Pharmaceutics ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033317

RESUMO

Multifunctional nanoparticles (NPs) that enable the imaging of drug delivery and facilitate cancer cell uptake are potentially powerful tools in tailoring oncologic treatments. Here we report the development of a layer-by-layer (LbL) formulation of folic acid (FA) and folate antimetabolites that have been well-established for enhanced tumor uptake and as potent chemotherapeutics, respectively. To investigate the uptake of LbL coated NPs, we deposited raltitrexed (RTX) or combined RTX-FA on fluorescent polystyrene NPs. The performance of these NP formulations was evaluated with CT26 murine colorectal cancer (CRC) cells in vitro and in vivo to examine both uptake and cytotoxicity against CRC. Fluorescence microscopy and flow cytometry indicated an increased accumulation of the coated NP formulations versus bare NPs. Ex vivo near-infrared (NIR) fluorescence imaging of major organs suggested the majority of NPs accumulated in the liver, which is typical of a majority of NP formulations. Imaging of the CRC tumors alone showed a higher average fluorescence from NPs accumulated in animals treated with the coated NPs, with the majority of RTX NP-treated animals showing the consistently-highest mean tumoral accumulation. Overall, these results contribute to the development of LbL formulations in CRC theranostic applications.

16.
Colloid Interface Sci Commun ; 28: 69-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31602357

RESUMO

Naturally-derived polysaccharides, such as alginate and chitosan, can be assembled to form nanocarriers for the delivery of therapeutic agents. Here we exploit the electrostatic complexation of alginate/chitosan in a water-in-oil (w/o) emulsion process to produce doxorubicin (DOX)-loaded nanoparticles (~80 nm) with exceptional spherical morphology and uniformity. This robust synthetic route utilizes an aqueous phase dispersed in a cyclohexane/dodecylamine organic phase and is capable of encapsulating DOX in the nanoparticle solution. The uptake and efficacy of this novel formulation was evaluated in a murine breast cancer cell line, 4T1, with comparable 72 h IC50 values of the nanoparticle solution (0.15 µg/mL) and free DOX (0.13 µg/mL). Overall, the favorable performance, physiochemical properties, and their facile production support these nanocarriers as promising platform for the delivery of aqueous soluble drugs.

17.
Adv Drug Deliv Rev ; 144: 35-56, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31279729

RESUMO

While the advancement of clinical radiotherapy was driven by technological innovations throughout the 20th century, continued improvement relies on rational combination therapies derived from biological insights. In this review, we highlight the importance of combination radiotherapy in the era of precision medicine. Specifically, we survey and summarize the areas of research where improved understanding in cancer biology will propel the field of radiotherapy forward by allowing integration of novel nanotechnology-based treatments.


Assuntos
Nanomedicina , Neoplasias/radioterapia , Animais , Terapia Combinada , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
18.
Nanoscale ; 11(29): 13947-13960, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31305836

RESUMO

Combined modality therapy incorporating raltitrexed (RTX), a thymidylate synthase inhibitor, and radiation can lead to improved outcome for rectal cancer patients. To increase delivery and treatment efficacy, we formulated a hyaluronic acid (HA) coated nanoparticle encapsulating RTX (HARPs) through layer-by-layer assembly. These particles were determined to have a diameter of ∼115 nm, with a polydispersity index of 0.112 and a zeta potential of -22 mV. Cell uptake in CT26 cells determined through flow cytometry showed a ∼5-fold increase between untargeted and HA-coated particles. Through viability and DNA damage assays, we assessed the potency of the free RTX and HARPs, and found increased DNA damage in cells treated with the RTX-loaded nanoparticles administered concurrently with radiation. In vivo efficacy through tumor growth inhibition was investigated in a syngeneic murine colorectal cancer model. Nanoparticle treatment showed no acute toxicity in vivo, and all treatments showed survival benefits for their respective groups compared to controls. HARPs alone slowed tumor growth, although not significantly. Radiation alone and in combination with the HARPs showed significant growth delay. Notably, the combination treatment significantly hindered tumor progression relative to the HARPs highlighting the benefit of this multipronged treatment. These results provide a foundation for loading RTX in a nanoparticle formulation, and establish a combined radiation and drug dosing schedule to determine optimal tumor growth delay and subsequent treatment efficacy.


Assuntos
Antimetabólitos Antineoplásicos/química , Portadores de Fármacos/química , Ácido Hialurônico/química , Nanopartículas/química , Quinazolinas/química , Tiofenos/química , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Dano ao DNA/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Radiação Ionizante , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Transplante Heterólogo
19.
ACS Appl Mater Interfaces ; 11(13): 12342-12356, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860347

RESUMO

Chemoradiation is an effective combined modality therapeutic approach that utilizes principles of spatial cooperation to combat the adaptability associated with cancer and to potentially expand the therapeutic window. Optimal therapeutic efficacy requires intelligent selection and refinement of radiosynergistic pharmaceutical agents, enhanced delivery methods, and temporal consideration. Here, a monodisperse sub-20 nm mixed poloxamer micelle (MPM) system was developed to deliver hydrophobic drugs intravenously, in tandem with ionizing radiation. This report demonstrates in vitro synergy and enhanced radiosensitivity when two molecularly targeted DNA repair inhibitors, talazoparib and buparlisib, are encapsulated and combined with radiation in a 4T1 murine breast cancer model. Evaluation of in vivo biodistribution and toxicity exhibited no reduction in particle accumulation upon radiation and a lack of both acute and chronic toxicities. In vivo efficacy studies suggested the promise of combining talazoparib, buparlisib, and radiation to enhance survival and control tumor growth. Tissue analysis suggests enhanced DNA damage leading to apoptosis, thus increasing efficacy. These findings highlight the challenges associated with utilizing clinically relevant inclusion criteria and treatment protocols because complete tumor regression and extended survival were masked by an aggressively metastasizing model. As with clinical treatment regimens, the findings here establish a need for further optimization of this multimodal platform.


Assuntos
Aminopiridinas/farmacologia , Neoplasias da Mama , Quimiorradioterapia , Dano ao DNA , Morfolinas/farmacologia , Ftalazinas/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Phys Med Biol ; 64(4): 04TR01, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30524090

RESUMO

The electromagnetic spectrum contains different frequency bands useful for medical imaging and therapy. Short wavelengths (ionizing radiation) are commonly used for radiological and radionuclide imaging and for cancer radiation therapy. Intermediate wavelengths (optical radiation) are useful for more localized imaging and for photodynamic therapy (PDT). Finally, longer wavelengths are the basis for magnetic resonance imaging and for hyperthermia treatments. Recently, there has been a surge of interest for new biomedical methods that synergize optical and ionizing radiation by exploiting the ability of ionizing radiation to stimulate optical emissions. These physical phenomena, together known as radioluminescence, are being used for applications as diverse as radionuclide imaging, radiation therapy monitoring, phototherapy, and nanoparticle-based molecular imaging. This review provides a comprehensive treatment of the physics of radioluminescence and includes simple analytical models to estimate the luminescence yield of scintillators and nanoscintillators, Cherenkov radiation, air fluorescence, and biologically endogenous radioluminescence. Examples of methods that use radioluminescence for diagnostic or therapeutic applications are reviewed and analyzed in light of these quantitative physical models of radioluminescence.


Assuntos
Radiação Eletromagnética , Luminescência , Modelos Teóricos , Imagem Molecular/métodos , Humanos , Fotoquimioterapia , Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...