Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732791

RESUMO

This study investigates the impact of varying side wind velocities and nozzle inclination angles on droplet penetration during plant protection spraying operations, focusing on citrus trees. Experiments were conducted across four wind speed levels (0, 1, 2, 3 m/s) perpendicular to the nozzle direction and seven nozzle inclination levels (0°, 8°, 15°, 23°, 30°, 38°, 45°) to evaluate droplet distribution under different spraying parameters. A baseline condition with 0 m/s wind speed and a 0° nozzle angle served as the control. Utilizing Computational Fluid Dynamics (CFD) and regression analysis techniques in conjunction with field trials, the droplet penetration was analyzed. Results indicate that at constant wind speeds, adjusting the nozzle inclination angle against the direction of the side wind can significantly enhance droplet deposition in the canopy, with a 23° inclination providing the optimal increase in deposition volume, averaging a change of +16.705 µL/cm2. Multivariate nonlinear regression analysis revealed that both wind speed and nozzle inclination angle significantly affect the droplet penetration ratio, demonstrating a correlation between these factors, with wind speed exerting a greater impact than nozzle angle. Increasing the nozzle inclination angle at higher wind speeds improves the penetration ratio, with the optimal parameters being a 23° angle and 3 m/s wind speed, showing a 12.6% improvement over the control. The model fitted for the impact of nozzle angle and wind speed on droplet penetration was validated through field experiments, identifying optimal angles for enhancing penetration at wind speeds of 1, 2, and 3 m/s as 8°, 17°, and 25°, respectively. This research provides insights for improving droplet penetration techniques in plant protection operations.

2.
Front Plant Sci ; 14: 1054587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844051

RESUMO

Introduction: Canopy stomatal conductance (Sc) indicates the strength of photosynthesis and transpiration of plants. In addition, Sc is a physiological indicator that is widely employed to detect crop water stress. Unfortunately, existing methods for measuring canopy Sc are time-consuming, laborious, and poorly representative. Methods: To solve these problems, in this study, we combined multispectral vegetation index (VI) and texture features to predict the Sc values and used citrus trees in the fruit growth period as the research object. To achieve this, VI and texture feature data of the experimental area were obtained using a multispectral camera. The H (Hue), S (Saturation) and V (Value) segmentation algorithm and the determined threshold of VI were used to obtain the canopy area images, and the accuracy of the extraction results was evaluated. Subsequently, the gray level co-occurrence matrix (GLCM) was used to calculate the eight texture features of the image, and then the full subset filter was used to obtain the sensitive image texture features and VI. Support vector regression, random forest regression, and k-nearest neighbor regression (KNR) Sc prediction models were constructed, which were based on single and combined variables. Results: The analysis revealed the following: 1) the accuracy of the HSV segmentation algorithm was the highest, achieving more than 80%. The accuracy of the VI threshold algorithm using excess green was approximately 80%, which achieved accurate segmentation. 2) The citrus tree photosynthetic parameters were all affected by different water supply treatments. The greater the degree of water stress, the lower the net photosynthetic rate (Pn), transpiration rate (Tr), and Sc of the leaves. 3) In the three Sc prediction models, The KNR model, which was constructed by combining image texture features and VI had the optimum prediction effect (training set: R2 = 0.91076, RMSE = 0.00070; validation set; R2 = 0.77937, RMSE = 0.00165). Compared with the KNR model, which was only based on VI or image texture features, the R2 of the validation set of the KNR model based on combined variables was improved respectively by 6.97% and 28.42%. Discussion: This study provides a reference for large-scale remote sensing monitoring of citrus Sc by multispectral technology. Moreover, it can be used to monitor the dynamic changes of Sc and provide a new technique for gaining a better understanding of the growth status and water stress of citrus crops.

3.
Front Plant Sci ; 14: 1297879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186603

RESUMO

Target detection technology and variable-rate spraying technology are key technologies for achieving precise and efficient pesticide application. To address the issues of low efficiency and high working environment requirements in detecting tree information during variable spraying in orchards, this study has designed a variable spraying control system. The system employed a Kinect sensor to real-time detect the canopy volume of citrus trees and adjusted the duty cycle of solenoid valves by pulse width modulation to control the pesticide application. A canopy volume calculation method was proposed, and precision tests for volume detection were conducted, with a maximum relative error of 10.54% compared to manual measurements. A nozzle flow model was designed to determine the spray decision coefficient. When the duty cycle ranged from 30% to 90%, the correlation coefficient of the flow model exceeded 0.95, and the actual flow rate of the system was similar to the theoretical flow rate. Field experiments were conducted to evaluate the spraying effectiveness of the variable spraying control system based on the Kinect sensor. The experimental results indicated that the variable spraying control system demonstrated good consistency between the theoretical spray volume and the actual spray volume. In deposition tests, compared to constant-rate spraying, the droplets under the variable-rate mode based on canopy volume exhibited higher deposition density. Although the amount of droplet deposit and coverage slightly decreased, they still met the requirements for spraying operation quality. Additionally, the variable-rate spray mode achieved the goal of reducing pesticide use, with a maximum pesticide saving rate of 57.14%. This study demonstrates the feasibility of the Kinect sensor in guiding spraying operations and provides a reference for their application in plant protection operations.

4.
Front Plant Sci ; 14: 1286332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235193

RESUMO

Backgrounds: UAVs for crop protection hold significant potential for application in mountainous orchard areas in China. However, certain issues pertaining to UAV spraying need to be addressed for further technological advancement, aimed at enhancing crop protection efficiency and reducing pesticide usage. These challenges include the potential for droplet drift, limited capacity for pesticide solution. Consequently, efforts are required to overcome these limitations and optimize UAV spraying technology. Methods: In order to balance high deposition and low drift in plant protection UAV spraying, this study proposes a plant protection UAV spraying method. In order to study the operational effects of this spraying method, this study conducted a UAV spray and grid impact test to investigate the effects of different operational parameters on droplet deposition and drift. Meanwhile, a spray model was constructed using machine learning techniques to predict the spraying effect of this method. Results and discussion: This study investigated the droplet deposition rate and downwind drift rate on three types of citrus trees: traditional densely planted trees, dwarf trees, and hedged trees, considering different particle sizes and UAV flight altitudes. Analyzing the effect of increasing the grid on droplet coverage and deposition density for different tree forms. The findings demonstrated a significantly improved droplet deposition rate on dwarf and hedged citrus trees compared to traditional densely planted trees and adopting a fixed-height grid increased droplet coverage and deposition density for both the densely planted and trellised citrus trees, but had the opposite effect on dwarfed citrus trees. When using the grid system. Among the factors examined, the height of the sampling point exhibited the greatest influence on the droplet deposition rate, whereas UAV flight height and droplet particle size had no significant impact. The distance in relation to wind direction had the most substantial effect on droplet drift rate. In terms of predicting droplet drift rate, the BP neural network performed inadequately with a coefficient of determination of 0.88. Conversely, REGRESS, ELM, and RBFNN yielded similar and notably superior results with a coefficient of determination greater than 0.95. Notably, ELM demonstrated the smallest root mean square error.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...