Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239370

RESUMO

Chlorophyll is an essential component that captures light energy to drive photosynthesis. Chlorophyll content can affect photosynthetic activity and thus yield. Therefore, mining candidate genes of chlorophyll content will help increase maize production. Here, we performed a genome-wide association study (GWAS) on chlorophyll content and its dynamic changes in 378 maize inbred lines with extensive natural variation. Our phenotypic assessment showed that chlorophyll content and its dynamic changes were natural variations with a moderate genetic level of 0.66/0.67. A total of 19 single-nucleotide polymorphisms (SNPs) were found associated with 76 candidate genes, of which one SNP, 2376873-7-G, co-localized in chlorophyll content and area under the chlorophyll content curve (AUCCC). Zm00001d026568 and Zm00001d026569 were highly associated with SNP 2376873-7-G and encoded pentatricopeptide repeat-containing protein and chloroplastic palmitoyl-acyl carrier protein thioesterase, respectively. As expected, higher expression levels of these two genes are associated with higher chlorophyll contents. These results provide a certain experimental basis for discovering the candidate genes of chlorophyll content and finally provide new insights for cultivating high-yield and excellent maize suitable for planting environment.


Assuntos
Clorofila , Zea mays , Clorofila/genética , Clorofila/metabolismo , Zea mays/genética , Zea mays/metabolismo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Fotossíntese
2.
Front Genet ; 13: 963852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276979

RESUMO

Brace roots are the main organ to support the above-ground part of maize plant. It involves in plant growth and development by water absorption and lodging resistance. The bracing root angle (BRA) and diameter (BRD) are important components of brace root traits. Illuminating the genetic basis of BRA and BRD will contribute the improvement for mechanized harvest and increasing production. A GWAS of BRA and BRD was conducted using an associated panel composed of 508 inbred lines of maize. The broad-sense heritability of BRA and BRD was estimated to be respectively 71% ± 0.19 and 52% ± 0.14. The phenotypic variation of BRA and BRD in the non-stiff stalk subgroup (NSS) and the stiff stalk subgroup (SS) subgroups are significantly higher than that in the tropical/subtropical subgroup (TST) subgroups. In addition, BRA and BRD are significantly positive with plant height (PH), ear length (EL), and kernel number per row (KNPR). GWAS revealed 27 candidate genes within the threshold of p < 1.84 × 10-6 by both MLM and BLINK models. Among them, three genes, GRMZM2G174736, GRMZM2G445169 and GRMZM2G479243 were involved in cell wall function, and GRMZM2G038073 encoded the NAC transcription factor family proteins. These results provide theoretical support for clarifying the genetic basis of brace roots traits.

3.
BMC Plant Biol ; 21(1): 570, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863098

RESUMO

BACKGROUND: Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. RESULTS: Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. CONCLUSION: Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.


Assuntos
Endosperma/metabolismo , Epigênese Genética , Impressão Genômica , Helianthus/genética , Helianthus/metabolismo , Alelos , Análise por Conglomerados , Metilação de DNA , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , RNA não Traduzido/genética
4.
Plant Sci ; 303: 110767, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487352

RESUMO

In maize, the shank is a unique tissue linking the stem to the ear. Shank length (SL) mainly affects the transport of photosynthetic products to the ear and the dehydration of kernels via regulated husk morphology. The limited studies on SL revealed it is a highly heritable quantitative trait controlled by significant additive and additive-dominance effects. However, the genetic basis of SL remains unclear. In this study, we analyzed three maize recombinant inbred line (RIL) populations to elucidate the molecular mechanism underlying the SL. The data indicated the SL varied among the three RIL populations and was highly heritable. Additionally, the SL was positively correlated with the husk length (HL), husk number (HN), ear length (EL), and ear weight (EW) in the BY815/K22 (BYK) and CI7/K22 (CIK) RIL populations, but was negatively correlated with the husk width (HW) in the BYK RIL population. Moreover, 10 quantitative trait loci (QTL) for SL were identified in the three RIL populations, five of which were large-effect QTL. The percentage of the total phenotypic variation explained by the QTL for SL was 13.67 %, 20.45 %, and 30.81 % in the BY815/DE3 (BYD), BYK, and CIK RIL populations, respectively. Further analyses uncovered some genetic overlap between SL and EL, SL and ear row number (ERN), SL and cob weight (CW), and SL and HN. Unlike the large-effect QTL qSL BYK-2-2, which spanned the centromere, the other four large-effect QTL were delimited to a single peak bin via bin map. Furthermore, 2, 5, 6, and 12 genes associated with SL were identified for qSL BYK-2-1, qSL CIK-2-1, qSL CIK-9-1, and qSL CIK-9-2, respectively. Five of the candidate genes for SL may contribute to the hormone metabolism and sphingolipid biosynthesis regulating cell elongation, division, differentiation, and expansion. These results may be relevant for future studies on the genetic basis of SL and for the molecular breeding of maize based on marker-assisted selection to develop new varieties with an ideal SL.


Assuntos
Locos de Características Quantitativas/genética , Zea mays/genética , Genes de Plantas/genética , Estudos de Associação Genética , Ligação Genética/genética , Melhoramento Vegetal , Característica Quantitativa Herdável , Zea mays/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...