Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 335: 139063, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37257659

RESUMO

For the sake of remediating the contamination of heavy metal ions (HMs) that poses high risk to the global environment, a novel inorganic nanocomposite with excellent robustness, calcium silicate hydrate (C-S-H), is synthesized at extremely low cost yet presents rapid adsorption rate and superhigh adsorption capacity. High concentrations of Cu(Ⅱ), Cd(Ⅱ), Co(Ⅱ) and Cr(Ⅲ) in wastewater can be purified to ultra-low level (∼0.008 mg L-1) within 60 min at low C-S-H dosage, the concentration and pH indexes of which meet the standard for direct discharge in China. The adsorption processes are spontaneous, following the Langmuir adsorption isotherm model, and its kinetics conforms to pseudo-second order model. Meanwhile, C-S-H presents excellent anti-interference performance during the ultra-purification of HMs when exposed to the acid environments, solutions with various HMs as well as high salinity. The ultra-purification of HMs and robustness of C-S-H is realized through multiple mechanisms based on adsorption, involving hydrolysis of HMs, electrostatic interaction, chemical microprecipitation, surface complexation and interlayer complexation, among which interlayer complexation is dominant. All these verify the robust performance and broad applicability of C-S-H to complex aqueous systems.


Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Compostos de Cálcio , Silicatos , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Chemosphere ; 286(Pt 3): 131905, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426289

RESUMO

Effective utilization of photoexcited electrons and holes is always a challenge in photocatalytic reactions. Herein, we reported ternary NixCo1-xP/reduced graphene oxide/g-C3N4 (NixCo1-xP/rGO/CN) composite as a photocatalyst for synergistic poly(lactic acid) photoreforming and H2 generation in alkaline aqueous solution. The rate of H2 production over the optimal 15Ni0·1Co0·9P/rGO/CN reached 576.7 µmol h-1 g-1, which is 3.6 times as high as binary 15Ni0·1Co0·9P/CN composite. The apparent quantum efficiency of the optimal 15Ni0·1Co0·9P/rGO/CN was 1.7% at λ = 420 nm monochromatic light. Mott-Schottky analysis suggested that the photogenerated electrons transfer along the pathway of CN→rGO→Ni0·1Co0·9P, where rGO and Ni0·1Co0·9P functioned as the medium for electron transporting and reaction site for H2 generation, respectively. Meanwhile, poly(lactic acid) was photoreformed into formate and acetate by the photogenerated holes and hydroxyl radical. This work demonstrates that ternary NixCo1-xP/rGO/CN composite can be applied as a cheap and promising photocatalyst for synergistic plastic photoreforming and H2 generation.


Assuntos
Grafite , Hidrogênio , Catálise , Poliésteres
3.
Mikrochim Acta ; 186(8): 494, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267250

RESUMO

This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Grafite/química , Sondas de Ácido Nucleico/química , Teofilina/análise , Trifosfato de Adenosina/química , Fluorescência , Teofilina/química
4.
J Chem Phys ; 149(21): 214104, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525732

RESUMO

Besides dictating the equilibrium phase diagram, the rugged free-energy landscape of AB block copolymers gives rise to a multitude of non-equilibrium phenomena. Self-consistent field theory (SCFT) can be employed to calculate the mean-field free energy, F [ ϕ A t a r g e t ] , of a non-equilibrium unstable state that is characterized by a given spatial density distribution, ϕ A t a r g e t , in the incompressible system. Such a free-energy functional is the basis of describing the structure formation by dynamic SCFT techniques or the identification of minimum free-energy paths via the string method. The crucial step consists in computing the external potential fields that generate the given density distribution in the corresponding system of non-interacting copolymers, i.e., the potential-to-density relation employed in equilibrium SCFT calculations has to be inverted (reverse SCFT calculation). We describe, generalize, and evaluate the computational efficiency of two different numerical algorithms for this reverse SCFT calculation-the Debye-function algorithm based on the structure factor and the field-theoretic umbrella-potential (FUP) algorithm. In contrast to the Debye-function algorithm, the FUP algorithm only yields the exact mean-field values of the given target densities in the limit of a strong umbrella potential, and we devise a two-step variant of the FUP algorithm that significantly mitigates this issue. For Gaussian copolymers, the Debye-function algorithm is more efficient for highly unstable states that are far away from the equilibrium, whereas the improved FUP algorithm outperforms the Debye-function algorithm closer to metastable states and is easily transferred to more complex molecular architectures.

5.
Phys Rev Lett ; 118(6): 067801, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234527

RESUMO

Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear ACB triblock copolymers after a rapid transformation of the middle C block from B to A. This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the ABB copolymer into a well-defined but unstable, starting state of the AAB copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear AB diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the AAB copolymer possesses the same symmetry as the initial, equilibrium mesophase of the ABB copolymer.

6.
J Phys Condens Matter ; 27(19): 194101, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25923313

RESUMO

The free-energy landscape of self-assembling block copolymer systems is characterized by a multitude of metastable minima and concomitant protracted relaxation times of the morphology. Tailoring rapid changes (quench) of thermodynamic conditions, one can reproducibly trap the ensuing kinetics of self-assembly in a specific metastable state. To this end, it is necessary to (1) control the generation of well-defined, highly unstable states and (2) design the unstable state such that the ensuing spontaneous kinetics of structure formation reaches the desired metastable morphology. This process-directed self-assembly provides an alternative to fine-tuning molecular architecture by synthesis or blending, for instance, in order to fabricate complex network structures. Comparing our simulation results to recently developed free-energy techniques, we highlight the importance of non-equilibrium molecular conformations in the starting state and motivate the significance of the local conservation of density.

7.
Phys Rev Lett ; 111(26): 267801, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483814

RESUMO

The free-energy landscape of self-assembling block copolymer systems is characterized by a multitude of metastable minima. Using particle-based simulations of a soft, coarse-grained model, we explore opportunities to reproducibly direct the spontaneous ordering of these self-assembling systems into a metastable complex network morphology--specifically, Schoen's I-WP periodic minimal surface--starting from a highly unstable state that is generated by a rapid expansion. This process-directed self-assembly provides an alternative to fine-tuning molecular architecture or blending for fabricating complex network structures. Comparing our particle-based simulation results to recently developed free-energy techniques, we critically assess their ability to predict spontaneous formation and highlight the importance of nonequilibrium molecular conformations in the starting state and the local conservation of density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...