Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i521-i528, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940132

RESUMO

MOTIVATION: Spatially resolved single-cell transcriptomics have provided unprecedented insights into gene expression in situ, particularly in the context of cell interactions or organization of tissues. However, current technologies for profiling spatial gene expression at single-cell resolution are generally limited to the measurement of a small number of genes. To address this limitation, several algorithms have been developed to impute or predict the expression of additional genes that were not present in the measured gene panel. Current algorithms do not leverage the rich spatial and gene relational information in spatial transcriptomics. To improve spatial gene expression predictions, we introduce Spatial Propagation and Reinforcement of Imputed Transcript Expression (SPRITE) as a meta-algorithm that processes predictions obtained from existing methods by propagating information across gene correlation networks and spatial neighborhood graphs. RESULTS: SPRITE improves spatial gene expression predictions across multiple spatial transcriptomics datasets. Furthermore, SPRITE predicted spatial gene expression leads to improved clustering, visualization, and classification of cells. SPRITE can be used in spatial transcriptomics data analysis to improve inferences based on predicted gene expression. AVAILABILITY AND IMPLEMENTATION: The SPRITE software package is available at https://github.com/sunericd/SPRITE. Code for generating experiments and analyses in the manuscript is available at https://github.com/sunericd/sprite-figures-and-analyses.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Software , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Humanos , Transcriptoma
2.
Nat Aging ; 4(4): 546-567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553564

RESUMO

Partial reprogramming (pulsed expression of reprogramming transcription factors) improves the function of several tissues in old mice. However, it remains largely unknown how partial reprogramming impacts the old brain. Here we use single-cell transcriptomics to systematically examine how partial reprogramming influences the subventricular zone neurogenic niche in aged mouse brains. Whole-body partial reprogramming mainly improves neuroblasts (cells committed to give rise to new neurons) in the old neurogenic niche, restoring neuroblast proportion to more youthful levels. Interestingly, targeting partial reprogramming specifically to the neurogenic niche also boosts the proportion of neuroblasts and their precursors (neural stem cells) in old mice and improves several molecular signatures of aging, suggesting that the beneficial effects of reprogramming are niche intrinsic. In old neural stem cell cultures, partial reprogramming cell autonomously restores the proportion of neuroblasts during differentiation and blunts some age-related transcriptomic changes. Importantly, partial reprogramming improves the production of new neurons in vitro and in old brains. Our work suggests that partial reprogramming could be used to rejuvenate the neurogenic niche and counter brain decline in old individuals.


Assuntos
Células-Tronco Neurais , Neurônios , Camundongos , Animais , Neurogênese/genética , Diferenciação Celular/genética , Reprogramação Celular/genética
3.
Proc Natl Acad Sci U S A ; 121(10): e2313719121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416677

RESUMO

Single-cell data integration can provide a comprehensive molecular view of cells, and many algorithms have been developed to remove unwanted technical or biological variations and integrate heterogeneous single-cell datasets. Despite their wide usage, existing methods suffer from several fundamental limitations. In particular, we lack a rigorous statistical test for whether two high-dimensional single-cell datasets are alignable (and therefore should even be aligned). Moreover, popular methods can substantially distort the data during alignment, making the aligned data and downstream analysis difficult to interpret. To overcome these limitations, we present a spectral manifold alignment and inference (SMAI) framework, which enables principled and interpretable alignability testing and structure-preserving integration of single-cell data with the same type of features. SMAI provides a statistical test to robustly assess the alignability between datasets to avoid misleading inference and is justified by high-dimensional statistical theory. On a diverse range of real and simulated benchmark datasets, it outperforms commonly used alignment methods. Moreover, we show that SMAI improves various downstream analyses such as identification of differentially expressed genes and imputation of single-cell spatial transcriptomics, providing further biological insights. SMAI's interpretability also enables quantification and a deeper understanding of the sources of technical confounders in single-cell data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Expressão Gênica , Análise de Célula Única
4.
Nat Methods ; 21(3): 444-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347138

RESUMO

Whole-transcriptome spatial profiling of genes at single-cell resolution remains a challenge. To address this limitation, spatial gene expression prediction methods have been developed to infer the spatial expression of unmeasured transcripts, but the quality of these predictions can vary greatly. Here we present Transcript Imputation with Spatial Single-cell Uncertainty Estimation (TISSUE) as a general framework for estimating uncertainty for spatial gene expression predictions and providing uncertainty-aware methods for downstream inference. Leveraging conformal inference, TISSUE provides well-calibrated prediction intervals for predicted expression values across 11 benchmark datasets. Moreover, it consistently reduces the false discovery rate for differential gene expression analysis, improves clustering and visualization of predicted spatial transcriptomics and improves the performance of supervised learning models trained on predicted gene expression profiles. Applying TISSUE to a MERFISH spatial transcriptomics dataset of the adult mouse subventricular zone, we identified subtypes within the neural stem cell lineage and developed subtype-specific regional classifiers.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Neurais , Animais , Camundongos , Incerteza , Benchmarking , Análise por Conglomerados , Transcriptoma , Análise de Célula Única
5.
Nat Aging ; 3(7): 866-893, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443352

RESUMO

The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.


Assuntos
Cromatina , Células-Tronco Neurais , Cromatina/genética , Neurogênese/genética , Encéfalo
6.
bioRxiv ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37162839

RESUMO

Whole-transcriptome spatial profiling of genes at single-cell resolution remains a challenge. To address this limitation, spatial gene expression prediction methods have been developed to infer the spatial expression of unmeasured transcripts, but the quality of these predictions can vary greatly. Here we present TISSUE (Transcript Imputation with Spatial Single-cell Uncertainty Estimation) as a general framework for estimating uncertainty for spatial gene expression predictions and providing uncertainty-aware methods for downstream inference. Across eleven benchmark datasets, TISSUE provides well-calibrated prediction intervals for predicted expression values. Moreover it consistently reduces false discovery rates for differential gene expression analysis, improves clustering and visualization of predicted spatial transcriptomics, and improves the performance of supervised learning models trained on predicted gene expression profiles. Applying TISSUE to a MERFISH spatial transcriptomics dataset of the adult mouse subventricular zone, we identified subtypes within the neural stem cell lineage and developed subtype-specific regional classifiers. TISSUE is publicly available as a flexible wrapper method for existing spatial gene expression prediction methods to assist researchers with implementing uncertainty-aware analyses of spatial transcriptomics data.

7.
Nat Aging ; 3(1): 121-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118510

RESUMO

The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.


Assuntos
Envelhecimento , Rejuvenescimento , Camundongos , Animais , Envelhecimento/genética , Senescência Celular , Encéfalo , Neurogênese
8.
Nat Commun ; 14(1): 780, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774377

RESUMO

Dimension reduction is an indispensable part of modern data science, and many algorithms have been developed. However, different algorithms have their own strengths and weaknesses, making it important to evaluate their relative performance, and to leverage and combine their individual strengths. This paper proposes a spectral method for assessing and combining multiple visualizations of a given dataset produced by diverse algorithms. The proposed method provides a quantitative measure - the visualization eigenscore - of the relative performance of the visualizations for preserving the structure around each data point. It also generates a consensus visualization, having improved quality over individual visualizations in capturing the underlying structure. Our approach is flexible and works as a wrapper around any visualizations. We analyze multiple real-world datasets to demonstrate the effectiveness of the method. We also provide theoretical justifications based on a general statistical framework, yielding several fundamental principles along with practical guidance.

9.
Nat Comput Sci ; 3(1): 86-100, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177955

RESUMO

Dimensionality reduction (DR) is commonly used to project high-dimensional data into lower dimensions for visualization, which could then generate new insights and hypotheses. However, DR algorithms introduce distortions in the visualization and cannot faithfully represent all relations in the data. Thus, there is a need for methods to assess the reliability of DR visualizations. Here we present DynamicViz, a framework for generating dynamic visualizations that capture the sensitivity of DR visualizations to perturbations in the data resulting from bootstrap sampling. DynamicViz can be applied to all commonly used DR methods. We show the utility of dynamic visualizations in diagnosing common interpretative pitfalls of static visualizations and extending existing single-cell analyses. We introduce the variance score to quantify the dynamic variability of observations in these visualizations. The variance score characterizes natural variability in the data and can be used to optimize DR algorithm implementations.


Assuntos
Algoritmos , Análise de Célula Única , Reprodutibilidade dos Testes
10.
J Vis ; 21(11): 15, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34677575

RESUMO

Deep neural network (DNN) models for computer vision are capable of human-level object recognition. Consequently, similarities between DNN and human vision are of interest. Here, we characterize DNN representations of Scintillating grid visual illusion images in which white disks are perceived to be partially black. Specifically, we use VGG-19 and ResNet-101 DNN models that were trained for image classification and consider the representational dissimilarity (\(L^1\) distance in the penultimate layer) between pairs of images: one with white Scintillating grid disks and the other with disks of decreasing luminance levels. Results showed a nonmonotonic relation, such that decreasing disk luminance led to an increase and subsequently a decrease in representational dissimilarity. That is, the Scintillating grid image with white disks was closer, in terms of the representation, to images with black disks than images with gray disks. In control nonillusion images, such nonmonotonicity was rare. These results suggest that nonmonotonicity in a deep computational representation is a potential test for illusion-like response geometry in DNN models.


Assuntos
Ilusões , Humanos , Redes Neurais de Computação , Percepção Visual
11.
Aging (Albany NY) ; 13(20): 23471-23516, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34718232

RESUMO

It is widely thought that individuals age at different rates. A method that measures "physiological age" or physiological aging rate independent of chronological age could therefore help elucidate mechanisms of aging and inform an individual's risk of morbidity and mortality. Here we present machine learning frameworks for inferring individual physiological age from a broad range of biochemical and physiological traits including blood phenotypes (e.g., high-density lipoprotein), cardiovascular functions (e.g., pulse wave velocity) and psychological traits (e.g., neuroticism) as main groups in two population cohorts SardiNIA (~6,100 participants) and InCHIANTI (~1,400 participants). The inferred physiological age was highly correlated with chronological age (R2 > 0.8). We further defined an individual's physiological aging rate (PAR) as the ratio of the predicted physiological age to the chronological age. Notably, PAR was a significant predictor of survival, indicating an effect of aging rate on mortality. Our trait-based PAR was correlated with DNA methylation-based epigenetic aging score (r = 0.6), suggesting that both scores capture a common aging process. PAR was also substantially heritable (h2~0.3), and a subsequent genome-wide association study of PAR identified significant associations with two genetic loci, one of which is implicated in telomerase activity. Our findings support PAR as a proxy for an underlying whole-body aging mechanism. PAR may thus be useful to evaluate the efficacy of treatments that target aging-related deficits and controllable epidemiological factors.


Assuntos
Envelhecimento , Estudo de Associação Genômica Ampla/métodos , Aprendizado de Máquina , Modelos Biológicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/fisiologia , Envelhecimento/psicologia , Algoritmos , Metilação de DNA/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neuroticismo , Fenótipo , Análise de Onda de Pulso , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 117(34): 20404-20410, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817469

RESUMO

Many complex systems experience damage accumulation, which leads to aging, manifest as an increasing probability of system collapse with time. This naturally raises the question of how to maximize health and longevity in an aging system at minimal cost of maintenance and intervention. Here, we pose this question in the context of a simple interdependent network model of aging in complex systems and show that it exhibits cascading failures. We then use both optimal control theory and reinforcement learning alongside a combination of analysis and simulation to determine optimal maintenance protocols. These protocols may motivate the rational design of strategies for promoting longevity in aging complex systems with potential applications in therapeutic schedules and engineered system maintenance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...