Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(43): 17961-17971, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37857562

RESUMO

The employment of stoichiometric alcohols and amines for imine synthesis under mild and green reaction conditions is still a challenge in the field. In this work, based on our research foundation in the thermocatalytic synthesis of imines over ceria, a CdS/CeO2 heterojunction photocatalyst was constructed and successfully realized the atom-economic synthesis of imines under visible light without additives at room temperature. Mechanistic experiments and corresponding characterizations indicated that the CdS/CeO2 heterojunction can improve the separation efficiency of photogenerated carriers, which can be further enhanced by the Ce4+/Ce3+ redox pair by rapidly combining photogenerated e-. The in situ-reduced Ce3+ can better activate O2 to form Ce-O-O·, which, together with h+, efficiently accelerates alcohol oxidation, which is the rate-determined step for the synthesis of imines via oxidative coupling reaction of alcohol and amine. In addition, our photocatalyst exhibited fairly decent reusability and substrate universality. This work solves problems of using base additives and excess amine or alcohol in the reported photocatalytic systems and provides new insight for designing CeO2-based photocatalytic oxidation catalysts.

2.
Angew Chem Int Ed Engl ; 61(2): e202112907, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34643982

RESUMO

The selective oxidation of aniline to metastable and valuable azoxybenzene, azobenzene or nitrosobenzene has important practical significance in organic synthesis. However, uncontrollable selectivity and laborious synthesis of the expensive required catalysts severely hinders the uptake of these reactions in industrial settings. Herein, we have pioneered the discovery of Zr(OH)4 as an efficient heterogeneous catalyst capable of the selective oxidation of aniline, using either peroxide or O2 as oxidant, to selectively obtain various azoxybenzenes, symmetric/unsymmetric azobenzenes, as well as nitrosobenzenes, by simply regulating the reaction solvent, without the need for additives. Mechanistic experiments and DFT calculations demonstrate that the activation of H2 O2 and O2 is primarily achieved by the bridging hydroxyl and terminal hydroxyl groups of Zr(OH)4 , respectively. The present work provides an economical and environmentally friendly strategy for the selective oxidation of aniline in industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...