Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(18): 4792-4798, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38666719

RESUMO

Sn-doped lead halide perovskites (LHPs) have attracted considerable attention for their lower bandgap and lower toxicity. While it is well-established that Sn doping easily introduces a lot of structural defects into LHP films, the extent to which these defects impact carrier dynamics has yet to be fully elucidated. Herein, we take Sn-doped MAPbBr3 films as an example to explore the influence of Sn doping on their carrier dynamics. The results show that Sn doping can simultaneously introduce many fillable electron traps and unfillable hole traps, consequently instigating an ultrafast carrier capture process. This further elicits long-lived internal charge separation between band edge and trap states or between two kinds of trap states, thereby enabling these carriers to persist for up to ∼2.6 µs. Our findings suggest that Sn doping potentially serves as an effective strategy to prolong the carrier lifetime in LHPs, which could pave the way for potential applications within Sn-based perovskites.

2.
Adv Mater ; 36(23): e2402725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551094

RESUMO

Creating hierarchical molecular block heterostructures, with the control over size, shape, optical, and electronic properties of each nanostructured building block can help develop functional applications, such as information storage, nanowire spectrometry, and photonic computing. However, achieving precise control over the position of molecular assemblies, and the dynamics of excitons in each block, remains a challenge. In the present work, the first fabrication of molecular heterostructures with the control of exciton dynamics in each block, is demonstrated. Additionally, these heterostructures are printable and can be precisely positioned using Direct Ink Writing-based (DIW) 3D printing technique, resulting in programable patterns. Singlet excitons with emission lifetimes on nanosecond or microsecond timescales and triplet excitons with emission lifetimes on millisecond timescales appear simultaneously in different building blocks, with an efficient energy transfer process in the heterojunction. These organic materials also exhibit stimuli-responsive emission by changing the power or wavelength of the excitation laser. Potential applications of these organic heterostructures in integrated photonics, where the versatility of fluorescence, phosphorescence, efficient energy transfer, printability, and stimulus sensitivity co-exist in a single nanowire, are foreseen.

3.
Adv Sci (Weinh) ; 10(28): e2303501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537363

RESUMO

Single-component metal halides with white light emission are highly attractive for solid-state lighting applications, but it is still challenging to develop all-inorganic lead-free metal halides with high white-light emission efficiency. Herein, by rationally introducing silver (Ag) into zero-dimensional (0D) Cs3 Cu2 Br5 as new structural building unit, a one-dimensional (1D) bimetallic halide Cs6 Cu3 AgBr10 is designed that emits strong warm-white light with an impressive photoluminescence quantum yield (PLQY) of 94.5% and excellent stability. This structural transformation lowers the conduction band minimum while maintaining the localized nature of the valence band maximum, which is crucial in expanding the excitation spectrum and obtaining efficient self-trapped excitons (STEs) emission simultaneously. Detailed spectroscopy studies reveal that the white-light originates from triplet STEs emission, which can be remarkably improved by weakening the strong electron-phonon coupling and thus suppressing phonon-induced non-radiative processes. Moreover, the interesting temperature-dependent emission behavior, together with self-absorption-free property, make Cs6 Cu3 AgBr10 as sensitive luminescent thermometer and high-performance X-ray scintillator, respectively. These findings demonstrate a general approach to achieving effective single-component white-light emitters based on lead-free, all-inorganic metal halides, thereby opening up a new avenue to explore their versatile applications such as lighting, temperature detection and X-ray imaging.

4.
J Phys Chem Lett ; 14(11): 2800-2806, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36907991

RESUMO

The phase segregation in mixed halide perovskites is recently found to improve the photoluminescence quantum yield (PLQY) of the perovskites by concentrating the carriers. However, how phase segregation affects the photoinduced carrier dynamics is unclear. Herein, we find that the phase segregation in CH3NH3PbBrxI3-x mixed halide perovskite thin film is morphology-dependent by showing I-rich domains mainly along the grain boundaries. Ultrafast transient absorption (TA) and photoluminescence upconversion (PL-UC) spectroscopy measurements uncover that the carrier accumulation in the low energy I-rich domains includes two carrier transfer pathways. Carrier transfer from the Br-rich domain and the mixed phase to the I-rich domain is realized by consecutive hole (∼0.5 ps) and electron (<12.4 ps) transfer and energy transfer (<12.4 ps), respectively. The finding reveals the carrier funneling dynamic mechanism in phase-segregated halide perovskite films and provides a guideline for the applications of mixed halide perovskites in color-conversion devices or high-efficiency LEDs.

5.
Nat Mater ; 21(11): 1282-1289, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075966

RESUMO

Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic 'fine-structure gap' that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes.

6.
ChemSusChem ; 15(14): e202200704, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567361

RESUMO

The synthesis of Co-doped Mn3 O4 nanocubes was achieved via galvanic replacement reactions for photo-reduction of CO2 . Co@Mn3 O4 nanocubes could efficiently photo-reduce CO2 to CO with a remarkable turnover number of 581.8 using [Ru(bpy)3 ]Cl2 ⋅ 6H2 O as photosensitizer and triethanolamine as sacrificial agent in acetonitrile and water. The galvanic replaced Co species are homogeneously distributed at the outer surface of Mn3 O4 , providing catalytic active sites during CO2 reduction reactions, which facilitate the separation and migration of photogenerated charge carriers, further benefiting the outstanding photocatalytic performance of CO2 reduction. Density functional theory calculations revealed that the decreasing of conduction band maximum in Co@Mn3 O4 was beneficial to the electron attachment from the excited sensitized molecule, which promoted photocatalytic reduction of CO2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...