Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 33: 444-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38076648

RESUMO

Diabetic retinopathy (DR) is a leading cause of blindness worldwide with limited treatment options. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) hold promise as a cell-free therapy for retinal diseases. In this study, we present evidence that the intravitreal injection of MSC-sEVs improved retinal function and alleviated retinal apoptosis, inflammation, and angiogenesis in both db/db mice and streptozotocin-induced diabetic rats. Mechanistically, hyperglycemia-induced activation of hypoxia-inducible factor-1α (HIF-1α) inhibited the tripartite motif 21 (TRIM21)-mediated ubiquitination and degradation of enhancer of zeste homologue 2 (EZH2), ultimately resulting in the downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) through EZH2-induced methylation modification. The presence of miR-5068 and miR-10228 in MSC-sEVs targeted the HIF-1α/EZH2/PGC-1α pathway. The blockade of miR-5068 and miR-10228 abolished the retinal therapeutic effects of MSC-sEVs. Additionally, we engineered MSC-sEVs with elevated levels of miR-5068 and miR-10228 to enhance retinal repair efficiency. Together, our findings provide novel insights into the mechanism underlying DR progress and highlight the potential of MSC-sEVs, especially engineered MSC-sEVs, as a therapeutic option for DR.

2.
J Nanobiotechnology ; 21(1): 449, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001463

RESUMO

Photoreceptor apoptosis is an important pathogenesis of retinal degeneration and a primary cause of vision loss with limited treatment methods. Mesenchymal stem/stromal cells-derived small extracellular vesicles (MSC-sEVs) have shown therapeutic value in various ocular disorders. Recent studies have revealed that hypoxic preconditioning can improve the effectiveness of MSC-sEVs in tissue regeneration. However, whether hypoxic preconditioned MSC-sEVs (Hyp-sEVs) exert superior effects on photoreceptor protection relative to normoxic conditioned MSC-sEVs (Nor-sEVs) remains unclear. Here, we reported that Hyp-sEVs further improved retinal structure, recovered retinal function, and suppressed photoreceptor apoptosis in N-methyl-N-nitrosourea (MNU)-induced mouse model compared with Nor-sEVs. Hyp-sEVs also exhibited enhanced anti-apoptotic roles in MNU-provoked 661 W cell injury in vitro. We then analyzed the protein profiles of Nor-sEVs and Hyp-sEVs by LC-MS/MS and found that growth-associated protein 43 (GAP43) was enriched in Hyp-sEVs. The knockdown of GAP43 abolished the retinal therapeutic effects of Hyp-sEVs. Mechanistically, hypoxic stimulation-induced hypoxia-inducible factor-1α (HIF-1α) activation was responsible for preventing tripartite motif-containing protein 25 (TRIM25)-mediated GAP43 ubiquitination and degradation, leading to the upregulation of GAP43 in Hyp-sEVs. Together, our findings uncover the efficacy and mechanism of Hyp-sEVs-based photoreceptor protection and highlight the potential of Hyp-sEVs as optimized therapeutics for retinal degeneration.


Assuntos
Vesículas Extracelulares , Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Retina/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo
3.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765913

RESUMO

Due to the lack of specific and effective biomarkers and therapeutic targets, the early diagnosis and treatment of gastrointestinal cancer remain unsatisfactory. As a type of nanosized vesicles derived from living cells, exosomes mediate cell-to-cell communication by transporting bioactive molecules, thus participating in the regulation of many pathophysiological processes. Recent evidence has revealed that several long non-coding RNAs (lncRNAs) are enriched in exosomes. Exosomes-mediated lncRNAs delivery is critically involved in various aspects of gastrointestinal cancer progression, such as tumor proliferation, metastasis, angiogenesis, stemness, immune microenvironment, and drug resistance. Exosomal lncRNAs represent promising candidates to act as the diagnosis biomarkers and anti-tumor targets. This review introduces the major characteristics of exosomes and lncRNAs and describes the biological functions of exosomal lncRNAs in gastrointestinal cancer development. The preclinical studies on using exosomal lncRNAs to monitor and treat gastrointestinal cancer are also discussed, and the opportunities and challenges for translating them into clinical practice are evaluated.

4.
Tissue Eng Regen Med ; 20(2): 157-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36637750

RESUMO

Extracellular vesicles (EVs)-based cell-free strategy has shown therapeutic potential in tissue regeneration. Due to their important roles in intercellular communications and their natural ability to shield cargos from degradation, EVs are also emerged as novel delivery vehicles for various bioactive molecules and drugs. Accumulating studies have revealed that EVs can be modified to enhance their efficacy and specificity for the treatment of many diseases. Engineered EVs are poised as the next generation of targeted delivery platform in the field of precision therapy. In this review, the unique properties of EVs are overviewed in terms of their biogenesis, contents, surface features and biological functions, and the recent advances in the strategies of engineered EVs construction are summarized. Additionally, we also discuss the potential applications of engineered EVs in targeted therapy of cancer and damaged tissues, and evaluate the opportunities and challenges for translating them into clinical practice.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
5.
Pharmaceutics ; 14(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297643

RESUMO

As a novel cell-free strategy, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) inherit the therapeutic potential of donor cells, and are widely used for the treatment of many diseases. Increasing studies have shown that MSC-EVs transfer various bioactive molecules to create a beneficial microenvironment, thus exerting protective roles in diabetic mellitus (DM) and diabetic complications. To overcome the limitations of natural MSC-EVs such as heterogeneity and insufficient function, several modification methods have been established for constructing engineered MSC-EVs with elevated repairing efficiency. In this review, the PubMed library was searched from inception to August 2022, using a combination of Medical Subject Headings (MeSH) and keywords related to MSC-EVs, DM, and diabetic complications. We provide an overview of the major characteristics of MSC-EVs and summarize the recent advances of MSC-EV-based therapy for hyperglycemia-induced tissue damage with an emphasis on MSC-EV-mediated delivery of functional components. Moreover, the potential applications of engineered MSC-EVs in DM-related diseases therapy are discussed by presenting examples, and the opportunities and challenges for the clinical translation of MSC-EVs, especially engineered MSC-EVs, are evaluated.

6.
Stem Cell Res Ther ; 13(1): 293, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841055

RESUMO

BACKGROUND: As a leading cause of vision decline and severe blindness in adults, diabetic retinopathy (DR) is characterized by the aggravation of retinal oxidative stress and apoptosis in the early stage. Emerging studies reveal that mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) treatment represents a promising cell-free approach to alleviate ocular disorders. However, the repairing effects of MSC-sEV in DR remain largely unclear. This study aimed at exploring the role and the underlying mechanism of MSC-sEV in hyperglycemia-induced retinal degeneration. METHODS: In vivo, we used streptozotocin (STZ) to establish diabetic rat model, followed by the intravitreal injection of MSC-sEV to determine the curative effect. The cell viability and antioxidant capacity of retinal pigment epithelium (RPE) cells stimulated with high-glucose (HG) medium after MSC-sEV treatment were analyzed in vitro. By detecting the response of cell signaling pathways in MSC-sEV-treated RPE cells, we explored the functional mechanism of MSC-sEV. Mass spectrometry was performed to reveal the bioactive protein which mediated the role of MSC-sEV. RESULTS: The intravitreal injection of MSC-sEV elicited antioxidant effects and counteracted retinal apoptosis in STZ-induced DR rat model. MSC-sEV treatment also reduced the oxidative level and enhanced the proliferation ability of RPE cells cultured in HG conditions in vitro. Further studies showed that the increased level of phosphatase and tensin homolog (PTEN) inhibited AKT phosphorylation and nuclear factor erythroid 2-related factor 2 (NRF2) expression in RPE cells stimulated with HG medium, which could be reversed by MSC-sEV intervention. Through mass spectrometry, we illustrated that MSC-sEV-delivered neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) could cause PTEN ubiquitination and degradation, activate AKT signaling and upregulate NRF2 level to prevent DR progress. Moreover, NEDD4 knockdown impaired MSC-sEV-mediated retinal therapeutic effects. CONCLUSIONS: Our findings indicated that MSC-sEV ameliorated DR through NEDD4-induced regulation on PTEN/AKT/NRF2 signaling pathway, thus revealing the efficiency and mechanism of MSC-sEV-based retinal protection and providing new insights into the treatment of DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Vesículas Extracelulares , Células-Tronco Mesenquimais , Ubiquitina-Proteína Ligases Nedd4 , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/terapia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases Nedd4/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
7.
Stem Cells Int ; 2022: 1779346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607400

RESUMO

Mesenchymal stem cells (MSCs) have been widely applied to regenerative medicine owing to their multiple differentiation, self-renewal, and immunomodulatory abilities. Exosomes are cell-secreted natural nanovesicles and thought to be mediators of intercellular communication and material transport. The therapeutic potential of MSCs can be largely attributed to MSC-derived exosomes (MSC-exosomes). Emerging evidence suggests that the therapeutic efficacy of MSC-exosomes is highly dependent on the status of MSCs, and optimization of the extracellular environment affects the exosomal content. Pretreatment methods including three-dimensional cultures, hypoxia, and other biochemical cues have been shown to potentially enhance the biological activity of MSC-exosomes while maintaining or enhancing their production. On the other hand, engineering means to enhance the desired function of MSC-exosomes has been rapidly gaining attention. In particular, biologically active molecule encapsulation and membrane modification can alter or enhance biological functions and targeting of MSC-exosomes. In this review, we summarize two possible strategies to improve the therapeutic activity of MSC-exosomes: preconditioning approaches and engineering exosomes. We also explore the underlying mechanisms of different strategies and discuss their advantages and limitations of the upcoming clinical applications.

8.
Am J Transl Res ; 13(3): 1445-1457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841669

RESUMO

Acute kidney injury (AKI) is defined by rapid deterioration of renal function, and is a common complication in hospitalized patients. Among the recent therapeutic options, mesenchymal stem cells (MSCs) are considered a promising therapeutic strategy for damaged tissue repair. Platelet rich plasma (PRP) regulates mesenchymal cells to repair tissue damage through the release of growth factors. In this study, we proposed a possible therapeutic use of MSCs stimulated by platelet-rich plasma (PRP-MSCs) in a glycerin-induced AKI murine model. In vivo and in vitro studies, showed that PRP-MSCs could significantly attenuate serum blood urea nitrogen and creatinine levels, and reverse the histopathological kidney damage. PRP-MSCs treatment reduced renal tubular cell apoptosis stimulated by glycerin. We confirmed that PRP promoted the proliferation and reinforced the stemness of MSCs by inducing YAP nucleus expression, and that PRP promoted MSCs exosomes in a paracrine manner to repair AKI through an activated AKT/Rab27 pathway. Our results revealed that the PRP stimulated MSCs paracrine pathway could effectively alleviate glycerin-induced AKI. Therefore, PRP pretreatment may be a new method to improve the therapeutic effect of MSCs.

9.
Am J Transl Res ; 13(12): 13227-13245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035672

RESUMO

As a type of nanosized membranous vesicles secreted by living cells, extracellular vesicles (EVs) mediate intercellular communications with excellent physicochemical stability and biocompatibility. By delivering biologically active molecules including proteins, nucleic acids and lipids, EVs participate in many physiological and pathological processes. Increasing studies have suggested that EVs may be biomarkers for liquid biopsy of retinal diseases due to the ability to transfer through the blood-retinal barrier. EVs also represent a novel cell-free strategy to repair tissue damage in regenerative medicine. Evidence has indicated that EVs can be engineered and modified to enhance their efficacy. In this review, an overview of the characteristics, isolation, and identification of EVs is provided. Moreover, recent advances with EVs in the diagnosis and treatment of retinal diseases and the engineering approaches to elevate their effects are introduced, and opportunities and challenges for clinical application are discussed.

10.
Cell Death Dis ; 11(5): 327, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382019

RESUMO

Exosomes from human umbilical cord mesenchymal stem cells (hucMSC-Ex) have been suggested as novel nanomaterials for regenerative medicine. Here we explored the roles of hucMSC-Ex through regulating Yes-associated protein (YAP) in renal injury repair by using rat unilateral ureteral obstruction (UUO) models. Our study identified mechanical stress induced YAP nucleus expression and stimulated collagen deposition and interstitial fibrosis in the kidney. Then, infusion with hucMSC-Ex promoted YAP nuclear cytoplasmic shuttling and ameliorated renal fibrosis in UUO model. Interestingly, hucMSC-Ex delivered casein kinase 1δ (CK1δ) and E3 ubiquitin ligase ß-TRCP to boost YAP ubiquitination and degradation. Knockdown of CK1δ and ß-TRCP in hucMSC decreased the repairing effects of hucMSC-Ex on renal fibrosis. Our results suggest that hucMSC-Ex attenuates renal fibrosis through CK1δ/ß-TRCP inhibited YAP activity, unveiling a new mechanism for the therapeutic effects of hucMSC-Ex on tissue injury and offering a potential approach for renal fibrosis treatment.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caseína Quinase Idelta/metabolismo , Exossomos/metabolismo , Rim/patologia , Células-Tronco Mesenquimais/metabolismo , Proteólise , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Exossomos/ultraestrutura , Fibrose , Técnicas de Silenciamento de Genes , Humanos , Rim/fisiopatologia , Ratos Sprague-Dawley , Cordão Umbilical , Obstrução Ureteral/patologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...