Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32744, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975206

RESUMO

The increasing prevalence and incidence of colorectal cancer (CRC), particularly in young adults, underscore the imperative to comprehend its fundamental mechanisms, discover novel diagnostic and prognostic markers, and enhance therapeutic strategies. Here, we integrated multi-omics data, including gene expression, somatic mutation data and DNA methylation data, to unravel the intricacies of tumor microenvironment (TME) in CRC and search for novel prognostic markers. By calculating the immune score for each patient from the expression profile, we delineated the differential immune cell fraction, constructed an immune-related multi-omics atlas, and identified molecular characteristics. The entire colorectal dataset (n = 343) was randomly divided into training (n = 249) and testing datasets (n = 94). We screened 144 immune-related genes, 6 mutant genes, and 38 methylation probes associated with overall survival (OS). These makers were then incorporated into a 10-gene prognostic model using Lasso and Cox regression in the training dataset, and the model's performance was evaluated in an independent validation dataset. The model exhibited satisfactory results (average concordance index [C-index] = 0.77), with the average 1-year, 3-year, and 5-year AUCs being 0.79, 0.76, and 0.76 in the training dataset and 0.74, 0.80, and 0.90 in the testing dataset. Furthermore, the prognostic model demonstrated applicability in guiding chemotherapy for CRC patients and exhibited a degree of pan-cancer utility in risk stratification. In conclusion, our integrated analysis of multi-omics data revealed immune-related genetic and epigenetic characteristics of the TME. We propose an integrative prognostic model that can stratify risk and guide chemotherapy for CRC patients. The generalizability of the model in risk stratification across different cancer types was validated in Pan-Cancer cohort.

2.
Mol Cells ; 47(7): 100079, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871298

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway and the p53 pathway, linked to tumorgenesis, are also promising targets for cancer treatment. NMD plays an important role in RNA quality control, while the p53 pathway is involved in cancer suppression. However, their individual and combined effects on cervical cancer are poorly understood. In this study, we evaluated the impacts of NMD inhibitor, Mouse double minute 2 homolog (MDM2) inhibitor, and their combination on cell apoptosis, cell cycle, and p53 target genes in human papillomavirus-18-positive HeLa cells. Our findings revealed that XR-2 failed to activate p53 or induce apoptosis in HeLa cells, whereas SMG1 (serine/threonine-protein kinase 1) inhibitor repressed cell proliferation at high concentrations. Notably, the combination of these 2 agents significantly inhibited cell proliferation, arrested the cell cycle, and triggered cell apoptosis. Mechanistically, MDM2 inhibitor and NMD inhibitor likely exert a synergistically through the truncated E6 protein. These results underscore the potential of employing a combination of MDM2 inhibitor and NMD inhibitor as a promising candidate for the clinical treatment of human papillomavirus-infected tumors.

3.
Comput Struct Biotechnol J ; 23: 1144-1153, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38510975

RESUMO

N6 adenosine methylation (m6A), one of the most prevalent internal modifications on mammalian RNAs, regulates RNA transcription, stabilization, and splicing. Growing evidence has focused on the functional role of m6A regulators on acute myeloid leukemia (AML). However, the global m6A levels after azacytidine (AZA) plus venetoclax (VEN) treatment in AML patients remain unclear. In our present study, bone marrow (BM) sample pairs (including pre-treatment [AML] and post-treatment [complete remission (CR)] samples) were harvested from three AML patients who had achieved CR after AZA plus VEN treatment for Nanopore direct RNA sequencing. Notably, the amount of m6A sites and the m6A levels in CR BMs was significantly lower than those in the AML BMs. Such a significant reduction in the m6A levels was also detected in AZA-treated HL-60 cells. Thirteen genes with decreased m6A and expression levels were identified, among which three genes (HPRT1, SNRPC, and ANP32B) were closely related to the prognosis of AML. Finally, we speculated the mechanism via which m6A modifications affected the mRNA stability of these three genes. In conclusion, we illustrated for the first time the global landscape of m6A levels in AZA plus VEN treated AML (CR) patients and revealed that AZA had a significant demethylation effect at the RNA level in AML patients. In addition, we identified new biomarkers for AZA plus VEN-treated AML via Nanopore sequencing technology in RNA epigenetics.

4.
Mol Carcinog ; 63(4): 677-687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362848

RESUMO

N6 -methyladenosine (m6 A) is the most prevalent epigenetic modification on eukaryotic messenger RNAs. Recent studies have focused on elucidating the key role of m6 A modification patterns in tumor progression. However, the relationship between m6 A and transcriptional regulation remains elusive. Nanopore technology enables the quantification of m6 A levels at each genomic site. In this study, a pair of tumor tissues and adjacent normal tissues from clear cell renal cell carcinoma (ccRCC) surgical samples were collected for Nanopore direct RNA sequencing. We identified 9644 genes displaying anomalous m6 A modifications, with 5343 genes upregulated and 4301 genes downregulated. Among these, 5224 genes were regarded as dysregulated genes, encompassing abnormal regulation of both m6 A modification and RNA expression. Gene Set Enrichment Analysis revealed an enrichment of these genes in pathways related to renal system progress and fatty acid metabolic progress. Furthermore, the χ2 test demonstrated a significant association between the levels of m6 A in dysregulated genes and their transcriptional expression levels. Additionally, we identified four obesity-associated genes (FTO, LEPR, ADIPOR2, and NPY5R) among the dysregulated genes. Further analyses using public databases revealed that these four genes were all related to the prognosis and diagnosis of ccRCC. This study introduced the novel approach of employing conjoint analysis of m6 A modification and RNA expression based on Nanopore sequencing to explore potential disease-related genes. Our work demonstrates the feasibility of the application of Nanopore sequencing technology in RNA epigenetic regulation research and identifies new potential therapeutic targets for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sequenciamento por Nanoporos , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Transcriptoma , Epigenoma , Epigênese Genética , RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
5.
Clin Transl Med ; 13(9): e1393, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37649244

RESUMO

BACKGROUND: Small extrachromosomal circular DNAs (eccDNAs) have the potential to be cancer biomarkers. However, the formation mechanisms and functions of small eccDNAs selected in carcinogenesis are not clear, and whether the small eccDNA profile in the plasma of cancer patients represents that in cancer tissues remains to be elucidated. METHODS: A novel sequencing workflow based on the nanopore sequencing platform was used to sequence naturally existing full-length small eccDNAs in tissues and plasma collected from 25 cancer patients (including prostate cancer, hepatocellular carcinoma and colorectal cancer), and from an independent validation cohort (including 7 cancer plasma and 14 healthy plasma). RESULTS: Compared with those in non-cancer tissues, small eccDNAs detected in cancer tissues had a significantly larger number and size (P = 0.040 and 2.2e-16, respectively), along with more even distribution and different formation mechanisms. Although small eccDNAs had different general characteristics and genomic annotation between cancer tissues and the paired plasma, they had similar formation mechanisms and cancer-related functions. Small eccDNAs originated from some specific genes had great multi-cancer diagnostic value in tissues (AUC ≥ 0.8) and plasma (AUC > 0.9), especially increasing the accuracy of multi-cancer prediction of CEA/CA19-9 levels. The high multi-cancer diagnostic value of small eccDNAs originated from ALK&ETV6 could be extrapolated from tissues (AUC = 0.804) to plasma and showed high positive predictive value (100%) and negative predictive value (82.35%) in a validation cohort. CONCLUSIONS: As independent and stable circular DNA molecules, small eccDNAs in both tissues and plasma can be used as ideal biomarkers for cost-effective multi-cancer diagnosis and monitoring.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/genética , DNA Circular/genética
6.
World J Surg Oncol ; 21(1): 130, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046344

RESUMO

BACKGROUND: We aimed to investigate the different metastases and prognoses of neuroblastoma (NB) and determine the risk factors of metastasis. METHOD: Data of 1224 patients with NB were obtained from the Surveillance, Epidemiology and End Results database (2010-2018). Pearson's chi-square test, Kaplan-Meier analysis, multivariable logistic regression and Cox regression analysis were used to determine the factors associated with prognosis. RESULTS: The overall incidence of NB was an age-adjusted rate of 8.2 patients per 1,000,000 children. In total, 1224 patients were included in our study, with 599 patients (48.9%) exhibiting distant metastases. Compared to patients with non-metastatic NB, a greater proportion of patients with metastatic NB were under 1 year, male, had an adrenal primary site, unilateral tumour, a tumour size > 10 cm, neuroblastoma-not otherwise specified (NB-NOS), second malignant neoplasms and were more likely to choose radiotherapy and chemotherapy. Multivariate Cox regression showed that metastasis was an independent risk factor for overall survival (OS) and cancer-specific survival (CSS). The survival rate of non-metastatic patients with NB was better than those with metastasis (OS: hazard ratio (HR): 0.248, P < 0.001; CSS: HR: 0.267, P < 0.001). The bone and liver were the two most common isolated metastatic sites in NB. However, no statistical difference was observed in OS and CSS between the only bone metastasis group, only liver metastasis group and bone metastasis combined with liver metastasis group (all P > 0.05). Additionally, age at diagnosis > 1 year (odds ratio (OR): 3.295, P < 0 .001), grades III-IV (OR: 26.228, P < 0 .001) and 5-10 cm tumours (OR: 1.781, P < 0 .001) increased the risk of bone metastasis of NB. Moreover, no surgical treatment (OR: 2.441, P < 0 .001) increased the risk of liver metastasis of NB. CONCLUSION: Metastatic NB has unique clinicopathological features, with the bone and liver as the most common single metastatic sites of NB. Therefore, more aggressive treatment is recommended for high-risk children with NB displaying distant metastases.


Assuntos
Doenças da Medula Óssea , Neoplasias Ósseas , Neoplasias Hepáticas , Neuroblastoma , Humanos , Masculino , Criança , Prognóstico , Neuroblastoma/terapia , Neuroblastoma/patologia , Fatores de Risco , Neoplasias Hepáticas/secundário , Programa de SEER , Metástase Neoplásica
7.
Cancer Med ; 12(8): 9815-9825, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965083

RESUMO

Immune checkpoints are protein molecules expressed on the immune cell membrane, which regulate the immune system to kill tumor cells. As an essential immune checkpoint, overexpressed PD-1 on tumor cells could inhibit T-cell activation after being bonded to PD-1. Due to this inhibitory effect, T-cell proliferation and cytokine secretion are suppressed, leading to immune escape of tumor cells. Here, we established a high-throughput method based on cell function screening technology to screen drugs regulating PD-L1 expression in tumor cells at the transcriptional level. After two screening rounds, 12 compounds that enhanced PD-L1 transcription while seven weakened were sorted out among 1018 FDA-approved drugs. Finally, a tumor cell line was used to verify the upregulation of endogenous PD-L1 expression for a drug named "vorinostat," a histone deacetylation inhibitor, after the two rounds of optional selection. Therefore, our research provides another perspective for using "vorinostat" in treating tumors and offers a convenient method to detect the transcriptional expression of other intracellular proteins besides PD-L1.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral
8.
Appl Microbiol Biotechnol ; 106(24): 8285-8294, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36404357

RESUMO

Current clinical laboratory assays are not sufficient for determining the activity of many specific human proteases yet. In this study, we developed a general approach that enables the determination of activities of caspase-3 based on the proteolytic activation of the engineered zymogen of the recombinant tyrosinase from Verrucomicrobium spinosum (Vs-tyrosinase) by detecting the diphenolase activity in an increase in absorbance at 475 nm. Here, we designed three different zymogen constructs of Vs-tyrosinase, including RSL-pre-pro-TYR, Pre-pro-TYR, and Pro-TYR. The active domain was fused to the reactive site loop (RSL) of α1-proteinase inhibitor and/or its own signal peptide (pre) and/or its own C-terminal domain (pro) via a linker containing a specific caspase-3 cleavage site. Further studies revealed that both RSL peptide and TAT signal peptide were able to inhibit tyrosinase diphenolase activity, in which RSL-pre-pro-TYR had the lowest background signals. Therefore, a specific protease activity such as caspase-3 could be detected when a suitable zymogen was established. Our results could provide a new way to directly detect the activities of key human proteases, for instance, to monitor the efficacy and safety of tumor therapy by determining the activity of apoptosis-related caspase-3 in patients. KEY POINTS: • RSL inhibited the activity of Verrucomicrobium spinosum tyrosinase. • N-pre and C-terminal domain exerted stronger dual inhibition on the Vs-tyrosinase. • The activity of caspase-3 could be measured by the zymogen activation system.


Assuntos
Proteínas de Bactérias , Ensaios Enzimáticos Clínicos , Precursores Enzimáticos , Monofenol Mono-Oxigenase , Peptídeo Hidrolases , Verrucomicrobia , Humanos , Caspase 3/análise , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/genética , Sinais Direcionadores de Proteínas , Verrucomicrobia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínios Proteicos , Peptídeo Hidrolases/análise
9.
Cell Death Discov ; 8(1): 402, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180435

RESUMO

The restoration of the normal function of the tumour suppressors, such as p53, is an important strategy in tumour therapeutics. Nonsense-mediated mRNA decay (NMD) inhibition by NMD inhibitor (NMDi) upregulates functional p53 isoforms, p53ß and p53γ, and activates the p53 pathway. XR-2, a novel mouse double minute 2 homolog (MDM2) inhibitor, can disrupt the interaction between p53 and MDM2, thus decreasing the MDM2-mediated degradation of p53 and increasing the p53 protein levels. However, the combined effects of these two agents have not been thoroughly explored. This study combined XR-2 and NMDi in four TP53 wild-types and four TP53-mutated cancer cell lines. The combination of these two agents achieved significant synergistic effects on TP53 wild-type cancer cell lines by transactivating p53 target genes, inducing apoptosis, cell-cycle arrest and DNA damage repair. The p53ß isoform induced by NMDi enhances the transactivation ability of p53α induced by XR-2, which partially explains the mechanism of the synergistic effects of XR-2 and NMDi. This study identified a combination treatment of NMDi and XR-2 which could serve as a novel cancer therapeutic approach for MDM2-overexpressed TP53 wild-type cancers and delineated a future therapy based on the further reactivation of p53.

10.
Front Microbiol ; 13: 841458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572679

RESUMO

Chemotherapeutic agents, such as 5-fluorouracil (5-FU) and oxaliplatin (Oxi), can not only kill the cancer cell but also influence the proliferation of gut microbiota; however, the interaction between these drugs and gut microbiota remains poorly understood. In this study, we developed a powerful framework for taxonomy composition and genomic variation analysis to investigate the mutagenesis effect and proliferation influence of chemotherapeutic agents, such as 5-FU and Oxi, on gut microbiota and the interaction between these drugs and gut microbiota during chemotherapy. Using the gut microbiome data, we detected 1.45 million variations among the chemotherapy groups and found the drugs significantly affected mutation signatures of gut microbiota. Oxi notably increased transversion rate, whereas 5-FU reduced the rate. Traits related to cell division and nutrient mobilization showed evidence of strong selection pressure from chemotherapeutic agents. In addition, drug-associated bacteriome shift patterns and functional alterations were found: the metabolism changes in the 5-FU group implied that gut microbiota could provide additional nicotinamide adenine dinucleotide (NAD+) to inhibit cancer cell autophagy; in the Oxi group, the ribosome and lysine biosynthesis genes were obviously enriched. Our study provides a blueprint for characterizing the role of microbes and drug-microbe interaction in the gut microbiota response to chemotherapy.

11.
Front Pharmacol ; 13: 871259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548335

RESUMO

Background: The inactivation of tumor-suppressor p53 plays an important role in second generation anti-androgens (SGAs) drug resistance and neuroendocrine differentiation in castration-resistant prostate cancer (CRPC). The reactivation of p53 by blocking the MDM2-p53 interaction represents an attractive therapeutic remedy in cancers with wild-type or functional p53. Whether MDM2-p53 inhibitor could overcome SGAs drug resistance in CRPC is still needed further research. Here, we investigated the anti-tumor efficacy and mechanisms of a novel MDM2-p53 inhibitor XR-2 in CRPC. Methods: To investigate the functions and mechanisms of XR-2 in prostate cancer, in vitro and in vivo biofunctional assays were performed. Western blot and qRT-PCR assay were performed to detect the protein and mRNA expression levels of indicated genes. CCK8, colony formation, flow cytometry and senescence assays were performed for cell function identifications. RNA-sequencing and bioinformatics analysis were mainly used to identify the influence of XR-2 on prostate cancer cells transcriptome. Subcutaneous 22Rv1 derived xenografts mice model was used to investigate the in vivo anti-tumor activity of XR-2. In addition, the broad-spectrum anti-tumor activities in vivo of XR-2 were evaluated by different xenografts mice models. Results: XR-2 could directly bind to MDM2, potently reactivate the p53 pathway and thus induce cell cycle arrest and apoptosis in wild-type p53 CRPC cell lines. XR-2 also suppresses the AR pathway as p53 regulates AR transcription inhibition and MDM2 participates in AR degradation. As a result, XR-2 efficiently inhibited CRPC cell viability, showed a synergistic effect with enzalutamide and overcame enzalutamide resistance both in vitro and in vivo. Moreover, results illustrated that XR-2 possesses broad-spectrum anti-tumor activities in vivo with favourable safety. Conclusion: MDM2-p53 inhibitor (XR-2) possesses potently prostate cancer progresses inhibition activity both in vitro and in vivo. XR-2 shows a synergistic effect with enzalutamide and overcomes enzalutamide resistance.

12.
Front Pediatr ; 9: 719803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660484

RESUMO

Background: 6-Mercaptopurine (6-MP) is the cornerstone of current antileukemia regimen and contributes greatly to improve the survival of pediatric acute lymphoblastic leukemia (ALL) patients. However, 6-MP dose-related toxicities limit its application. TPMT, NUDT15, and ITPA are pharmacogenetic markers predicting 6-MP-related toxicities, but their genetic polymorphisms differ from those of ethnic populations. In Yunnan province, a multiethnic region of China, we had no genetic data to predict 6-MP toxicities. In this study, we evaluated the most common variants involved in 6-MP metabolism-TPMT *3C (rs1142345), NUDT15 c.415C>T (rs116855232), and ITPA c.94C>A (rs1127354) variants-in our cohort of pediatric ALL patients. Methods: A total of 149 pediatric ALL patients in the Affiliated Children's Hospital of Kunming Medical University (Yunnan Children's Medical Center) from 2017 to 2019 were enrolled in this retrospective study. We assessed the TPMT *3C (rs1142345), NUDT15 c.415C>T (rs116855232), and ITPA c.94C>A (rs1127354) frequencies and evaluated association between genotypes and 6-MP toxicities, 6-MP dose, and event-free survival (EFS) in these ALL patients. Results: The allele frequencies of TPMT *3C (rs1142345), NUDT15 c.415C>T (rs116855232), and ITPA c.94C>A (rs1127354) were 1.34%, 14.43%, and 18.79%, respectively. Only NUDT15 c.415C>T (rs116855232) was strongly associated with 6-MP toxicity and 6-MP tolerable dose. NUDT15 c.415C>T was related to leukopenia, p = 0.008, OR = 2.743 (95% CI: 1.305-5.768). The T allele was significantly correlated with 6-MP tolerable dose, dose of NUDT15 c.415C>T wild genotype CC 39.80 ± 1.32 mg/m2, heterozygotes CT 35.20 ± 2.29 mg/m2, and homozygotes TT 18.95 ± 3.95 mg/m2. 6-MP tolerable dose between CC and TT had a significant difference, p = 0.009. Between CC and CT, and CT and TT, they had no significant difference. EFS showed no significant difference among NUDT15 c.415C>T genotypes. Conclusion: NUDT15 c.415C>T (rs116855232) was an optimal predictor for 6-MP toxicity and tolerable dose in pediatric ALL patients from Yunnan province, a multiethnic region in China, and would play an important role in precise therapy for ALL.

13.
Front Genet ; 11: 566080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240320

RESUMO

Staphylococcus epidermidis is one of the most commonly isolated species from human skin and the second leading cause of bloodstream infections. Here, we performed a large-scale comparative study without any pre-assigned reference to identify genomic determinants associated with the diversity and adaptation of S. epidermidis strains to various environments. Pan-genome of S. epidermidis was open with 435 core proteins and had a pan-genome size of 8,034 proteins. Genome-wide phylogenetic tree showed high heterogeneity and suggested that routine whole genome sequencing was a powerful tool for analyzing the complex evolution of S. epidermidis and for investigating the infection sources. Comparative genome analyses demonstrated a range of antimicrobial resistance (AMR) genes, especially those within mobile genetic elements. The complicated host-bacterium and bacterium-bacterium relationships help S. epidermidis to play a vital role in balancing the epithelial microflora. The highly variable and dynamic nature of the S. epidermidis genome may contribute to its success in adapting to broad habitats. Genes related to biofilm formation and cell toxicity were significantly enriched in the blood and skin, demonstrating their potentials in identifying risk genotypes. This study gave a general landscape of S. epidermidis pan-genome and provided valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible species.

14.
J Ophthalmol ; 2018: 6543937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862066

RESUMO

PURPOSE: To assess whether to continue aspirin therapy while having uncomplicated phacoemulsification cataract surgery with different incisions. METHODS: Consecutive patients having cataract surgery under topical anesthesia with different incisions between May 2016 and August 2017 were followed. 236 eyes of 166 patients on routine aspirin therapy were randomized into 2 groups: continuation group, 112 eyes; discontinuation group, 124 eyes. 121 eyes of 94 patients on no routine anticoagulant therapy were used as the control group. Patients were examined 1 day preoperatively and 1 day and 7 days postoperatively. Intraoperative and postoperative complications were recorded. RESULTS: Statistically, there was no significant difference about postoperative BCVA among three groups. A higher incidence of subconjunctival hemorrhage was shown in the continuation group than in the discontinuation group and the control group (17.0% versus 8.1%, p=0.038; 17.0% versus 7.4%, p=0.025, resp.). Although corneal edema was greater in clear corneal incision cases than that of scleral tunnel incision cases (22.5% versus 12.0%, p=0.009), subconjunctival hemorrhage was greater in scleral tunnel incision cases (14.9% versus 6.6%, p=0.011). Subgroup analyses revealed that patients of scleral tunnel incision who continued taking aspirin had a higher incidence of subconjunctival hemorrhage compared with those who discontinued (25.5% versus 10.9%, p=0.038), but no same conclusion in clear corneal incision cases (8.8% versus 5.0%, p=0.483). CONCLUSIONS: The outcomes indicated that phacoemulsification cataract surgery under topical anesthesia could be safely performed without ceasing systemic aspirin therapy. Clear corneal incision could be a better choice in patients treated with aspirin.

15.
PLoS One ; 10(5): e0125722, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938435

RESUMO

BACKGROUNDS: Cistanche deserticola is a completely non-photosynthetic parasitic plant with great medicinal value and mainly distributed in desert of Northwest China. Its dried fleshy stem is a crucial tonic in traditional Chinese medicine with roles of mainly improving male sexual function and strengthening immunity, but few mechanistic studies have been conducted partly due to the lack of genomic and transcriptomic resources. RESULTS: In this study, we performed deep transcriptome sequencing in fleshy stem of C. deserticola, and about 80 million reads were generated using Illumina pair-end sequencing on HiSeq2000 platform. Using trinity assembler, we obtained 95,787 transcript sequences with transcript lengths ranging from 200 bp to 15,698 bp, having an average length of 950 bases and the N50 length of 1,519 bases. 63,957 transcripts were identified actively expressed with FPKM ≥ 0.5, in which 30,098 transcripts were annotated with gene descriptions or gene ontology terms by sequence similarity analyses against several public databases (Uniprot, NR and Nt at NCBI, and KEGG). Furthermore, we identified key enzyme genes involved in biosynthesis of lignin and phenylethanoid glycosides (PhGs) which are known to be the primary active ingredients. Four phenylalanine ammonia-lyase (PAL) genes, the first key enzyme in lignin and PhG biosynthesis, were identified based on sequences comparison and phylogenetic analysis. Two biosynthesis pathways of PhGs were also proposed for the first time. CONCLUSIONS: In all, we completed a global analysis of the C. deserticola fleshy stem transcriptome using RNA-seq technology. A collection of enzyme genes related to biosynthesis of lignin and phenylethanoid glysides were identified from the assembled and annotated transcripts, and the gene family of PAL was also predicted. The sequence data from this study will provide a valuable resource for conducting future phenylethanoid glysides biosynthesis researches and functional genomic studies in this important medicinal plant.


Assuntos
Cistanche/genética , Perfilação da Expressão Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Caules de Planta/genética , Transcriptoma , Cistanche/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Caules de Planta/metabolismo
16.
Insect Sci ; 22(1): 65-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24347559

RESUMO

The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is an invasive, concealed and destructive tissue borer, and it becomes a lethal pest of the palm family of plants and has been reported to attack 20 palm species around the globe. Here we report a systematic transcriptomic study on embryogenesis of RPW, where we analyze the transcriptomes across five developmental stages of RPW embryogenesis, involving four embryonic stages (E1, E2, E3 and E4) and one larval stage (L1). Using the RNA-seq and next-generation platforms, we generated 80 to 91 million reads for each library and assemble 22 532 genes that are expressed at different embryonic stages. Among the total transcripts from the five embryonic development stages, we found that 30.45 % are differentially expressed, 10.10 % show stage-specificity and even a larger fraction, 62.88 %, exhibit constitutive expression in all the stages. We also analyzes the expression dynamics of several conserved signaling pathways (such as Hedgehog, JAK-STAT, Notch, TGF-ß, Ras/MAPK and Wnt), as well as key developmental genes, including those related to apoptosis, axis formation, Hox complex, neurogenesis and segmentation. The datasets provide an essential resource for gene annotation and RPW functional genomics, including studies by using tools and concepts from multiple disciplines, such as development, physiology, biochemistry, molecular biology and genetics.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Gorgulhos/genética , Animais , Arecaceae/parasitologia , Sequência de Bases , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma de Inseto , Larva/genética , Análise de Sequência , Transdução de Sinais/genética , Transcrição Gênica , Gorgulhos/embriologia , Gorgulhos/crescimento & desenvolvimento
17.
Environ Microbiol ; 15(11): 3020-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102776

RESUMO

The intestinal microbes residing in the red palm weevil (RPW, Rhynchophorus ferrugineus) larva consume tender interior fibrous tissues of date palm trunks. The understanding of such microbiota at molecular level provides vital clues for the biological control of this devastating pest. Using pyrosequencing and shotgun strategy, we first study taxonomic profiles of the microbiota sampled at different months (March, July and November), and then confirm the impact of high-temperature stress on the microbial populations based on data from 16S rRNA amplicons using both field and laboratory samples. We further identify Klebsiella pneumoniae in November and Lactococcus lactis in July as the dominant species of the microbiota. We find that the RPW gut microbiota degrades polysaccharides and sucrose with hydrolases and that different active bacterial species in November and July are responsible for the symbiotic relationship between the microbiota and the host. Our results provide vital information for pest control and cellulolytic bacterial species characterization.


Assuntos
Intestinos/microbiologia , Klebsiella pneumoniae/genética , Lactococcus lactis/genética , Metagenoma/genética , Gorgulhos/microbiologia , Animais , Sequência de Bases , Euryarchaeota/classificação , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Lactococcus lactis/classificação , Lactococcus lactis/isolamento & purificação , Larva/microbiologia , Phoeniceae/metabolismo , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA
18.
Insect Sci ; 20(6): 689-702, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23955844

RESUMO

The red palm weevil (RPW; Rhynchophorus ferrugineus) is a devastating pest of palms, prevalent in the Middle East as well as many other regions of the world. Here, we report a large-scale de novo complementary DNA (cDNA) sequencing effort that acquired ∼5 million reads and assembled them into 26 765 contigs from 12 libraries made from samples of different RPW developmental stages based on the Roche/454 GS FLX platform. We annotated these contigs based on the publically available known insect genes and the Tribolium castaneum genome assembly. We find that over 80% of coding sequences (CDS) from the RPW contigs have high-identity homologs to known proteins with complete CDS. Gene expression analysis shows that the pupa and larval stages have the highest and lowest expression levels, respectively. In addition, we also identified more than 60 000 single nucleotide polymorphisms and 1 200 simple sequence repeat markers. This study provides the first large-scale cDNA dataset for RPW, a much-needed resource for future molecular studies.


Assuntos
Genes de Insetos , Gorgulhos/genética , Animais , Feminino , Biblioteca Gênica , Mutação INDEL , Masculino , Repetições de Microssatélites , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Gorgulhos/crescimento & desenvolvimento
19.
Nat Commun ; 4: 2274, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23917264

RESUMO

Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm's unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants.


Assuntos
Arecaceae/genética , Genoma de Planta/genética , Sequência de Bases , Metabolismo dos Carboidratos/genética , Cromossomos de Plantas/genética , Duplicação Gênica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Anotação de Sequência Molecular , Família Multigênica/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Sintenia/genética
20.
Plant Mol Biol ; 79(6): 521-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22736259

RESUMO

The date palm (Phoenix dactylifera L.), famed for its sugar-rich fruits (dates) and cultivated by humans since 4,000 B.C., is an economically important crop in the Middle East, Northern Africa, and increasingly other places where climates are suitable. Despite a long history of human cultivation, the understanding of P. dactylifera genetics and molecular biology are rather limited, hindered by lack of basic data in high quality from genomics and transcriptomics. Here we report a large-scale effort in generating gene models (assembled expressed sequence tags or ESTs and mapped to a genome assembly) for P. dactylifera, using the long-read pyrosequencing platform (Roche/454 GS FLX Titanium) in high coverage. We built fourteen cDNA libraries from different P. dactylifera tissues (cultivar Khalas) and acquired 15,778,993 raw sequencing reads-about one million sequencing reads per library-and the pooled sequences were assembled into 67,651 non-redundant contigs and 301,978 singletons. We annotated 52,725 contigs based on the plant databases and 45 contigs based on functional domains referencing to the Pfam database. From the annotated contigs, we assigned GO (Gene Ontology) terms to 36,086 contigs and KEGG pathways to 7,032 contigs. Our comparative analysis showed that 70.6 % (47,930), 69.4 % (47,089), 68.4 % (46,441), and 69.3 % (47,048) of the P. dactylifera gene models are shared with rice, sorghum, Arabidopsis, and grapevine, respectively. We also assigned our gene models into house-keeping and tissue-specific genes based on their tissue specificity.


Assuntos
Arecaceae/genética , Genoma de Planta , RNA de Plantas/genética , DNA Complementar/genética , DNA de Plantas/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Flores/genética , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Redes e Vias Metabólicas/genética , Modelos Genéticos , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...