Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2213130120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972452

RESUMO

The value of considerable residual energy in waste Li-ion batteries (WLIBs) is always neglected. At present, "this energy" is always wasted during the discharge process of WLIBs. However, if this energy could be reused, it would not only save a lot of energy but also avoid the discharge step of recycling of WLIBs. Unfortunately, the instability of WLIBs potential is a challenge to efficient utilization of this residual energy. Here, we propose a method that could regulate the cathode potential and current of the battery by simply adjusting the solution pH to utilize 35.08%, 88.4%, and 84.7% of the residual energy for removing heavy metal ions from wastewater, removing Cr (VI) from wastewater, and recovering copper from the solution, respectively. By taking advantage of the high internal resistance R of WLIBs and the sudden change of battery current I caused by iron passivation on the positive electrode of the battery, this method could induce the response of overvoltage η (η = IR) inside the battery at different pH levels to regulate the cathode potential µ of the battery to the three intervals. The potential ranges of the battery cathode corresponding to pH < 3.4, pH ≈ 3.4, and pH > 4 were µ > -0.47V, -0.47V < µ < -0.82V, and µ < -0.82V, respectively. This study provides a promising way and theoretical basis for the development of technologies for reusing residual energy in WLIBs.

2.
J Hazard Mater ; 420: 126568, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252663

RESUMO

Precious metal (PM) retrievement from e-waste is of great significance for reducing virgin mining activity and promoting rare resource sustainability. However, current PM recycling methods rely mainly on caustic aqua regia or unstable sulfur-based ligand, which has caused severe environmental damage and process inefficiency. Here, we propose an environmentally friendly halide-regulated strategy, utilizing milder and renewable oxidant-cupric/ferric ion for facile PM dissolution. This is realized by the synergistic effect of enhanced oxidizing ability of Cu(II) and reduced oxidation potential of PM with halide addition. Electrochemical tests and leaching experiment results show that Cu(II)/Cu(I) redox potential experiences great change with bromide, increasing from 0.4 to 0.75 V. Fast corrosion feature was observed for Au in Cu(II)/Fe(III)-Br- and Pd in Cu(II)/Fe(III)-Cl-, and it can be accelerated by increasing oxidant and halide concentration. Our proposed strategy outperforms traditional methods with stable and fast dissolution, where 2.5 mol/L Br- is appropriate for Au dissolution. Moreover, selective dissolution of base metal, Pd/Ag, and Au can be achieved via ligand alteration and be further combined with electrodeposition technique for multi metal recovery and oxidant regeneration. This halide-regulated strategy can lead PM recycling from pollutive status towards environmentally friendly road.


Assuntos
Resíduo Eletrônico , Resíduo Eletrônico/análise , Compostos Férricos , Ouro , Oxirredução , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...